An Example Contribution for EuroCG 2018*

² Antonio Example¹ and Sylvia Veryknown²

- 3 1 Important University
- 4 aexample@cs.important.de
- 5 2 Department of Mathematics and Computer Science, University of Somewhere
- 6 sveryknown@math.somewhere.nl
- 7 Abstract
- $_{\rm 8}$ $\,$ This example file was adapted from Bettina Speckmann's example file for EuroCG 2005. It uses
- ⁹ the style-file **eurocg18.cls** for EuroCG 2018, which was adapted from the LIPIcs-style, with
- ¹⁰ kind permission from Dagstuhl publishing.
- Here you should write a concise, informative, and exciting abstract for your paper.

12 **1** Introduction

13 1.1 Problem Statement and Solution

¹⁴ 1.1.1 Problem Setup

 $_{15}$ $\,$ We consider only the two-dimensional setting. We assume \ldots

Precise Problem Formulation. Describe your problem as clearly as possibly, instead of the usual...

- ¹⁸ ► Conjecture 1.1. Could it really be like this?
- ▶ **Observation 1.2.** *Probably not* ...

20 **1.2** Basic Definitions

▶ **Definition 1.3.** Some things are just not definable ...

²² 1.3 Related Results from the Literature

- ²³ We improve upon the well-known algorithm of Agarwal, Basch, Guibas, Hershberger, and ²⁴ Zhang [1] in the following way: ...
- ²⁵ **2** The New Algorithm

²⁶ **3** Complexity Analysis

- **Theorem 3.1.** This is the most important theorem.
- ²⁸ **Proof.** It even comes with a proof ...

We would like to remind you how cute the logo of the Canadian Conference on Computational Geometry 2003 was, see Figure 1.

^{*} Supported by our friends.

Submitted to the 34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018. This is an extended abstract of a presentation given at EuroCG'18. It has been made public for the benefit of the community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

Figure 1 This was the logo of CCCG 2003.

There should be some more text explaining research results in some additional sections, 31 but since this is only an example file \ldots 32

An enumeration: 33 a 34 0 _ 35 1 36 _

2

b 37

39

47

Lemma 3.2. The following formula holds for all integers n > 0: 38

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \tag{1}$$

Proof. (Not entirely convincing) Let $T(n) := \frac{n(n-1)}{2}$ denote the claimed formula. 40

The induction basis $T(0) = \frac{0 \cdot 1}{2} = 0$, together with (2), establishes (1). 45

▶ Lemma 3.3. And then we also found this lemma, which we state without proof. 46

4 Conclusion

What we did is amazing and improves everything that was there before, in particular when 48 compared to [2]. 49

Acknowledgments. We thank the organizers for the tasty cookies. 50

– References – 51

52	1	P. K. Agarwal, J. Basch, L. J. Guibas, J. Hershberger, and L. Zhang. Deformable free-space
53		tilings for kinetic collision detection. Int. J. Robotics Res., 21(3):179–198, 2002.
54	2	Donald E. Knuth. Combinatorial Algorithms, Part 1, volume 4A of The Art of Computer
55		Programming. Addison-Wesley, 2011.