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ABSTRACT

Following the recent success of deep neural networks (DNN) on video computer vision

tasks, performing DNN inferences on videos that originate from mobile devices has gained

practical significance. As such, previous approaches developed methods to offload DNN infer-

ence computations for images to cloud servers to manage the resource constraints of mobile

devices. However, when it comes to video data, communicating information of every frame

consumes excessive network bandwidth and renders the entire system susceptible to adverse

network conditions such as congestion. Thus, in this work, we seek to exploit the temporal

coherence between nearby frames of a video stream to mitigate network pressure. That is, we

propose ShadowTutor, a distributed video DNN inference framework that reduces the num-

ber of network transmissions through intermittent knowledge distillation to a student model.

Moreover, we update only a subset of the student’s parameters, which we call partial distilla-

tion, to reduce the data size of each network transmission. Specifically, the server runs a large

and general teacher model, and the mobile device only runs an extremely small but specialized

student model. On sparsely selected key frames, the server partially trains the student model

by targeting the teacher’s response and sends the updated part to the mobile device. We in-

vestigate the effectiveness of ShadowTutor with HD video semantic segmentation. Evaluations

show that network data transfer is reduced by 95% on average. Moreover, the throughput

of the system is improved by over three times and shows robustness to changes in network

bandwidth.

Keyword: deep neural network, distributed inference, knowledge distillation, video semantic

segmentation
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Chapter 1

Introduction

Deep learning approaches have proved to be extremely powerful in fields such as computer

vision [1], natural language processing [2], speech recognition [3], and sequential recommenda-

tion [4]. Due to their applicability to various services, such DNN models sparked interest for

performing DNN inference directly on data generated on mobile devices.

Video is one of the most important among such data due to its numerous practical ap-

plications. Autonomous vehicles perform road segmentation to traverse the street and detect

obstacles [5]. CCTV cameras used for home security can notice movements and detect objects

using DNNs [6]. Mobile selfie apps segment humans and the rest to change the background or

simulate background blurring effects [7]. Thus, video DNN inferences on comparatively weak

devices have become a core mechanism for delivering various services and technologies.

In sum, we make the following contributions:

• We design ShadowTutor, a distributed video DNN inference framework that reduces the

number of network transmissions and the data size of each.

• We allow ShadowTutor to be robust to changes in network conditions by adopting asyn-

chronous inference.

• We aid the configuration of ShadowTutor by providing analytic models of its network

traffic and throughput in terms of system parameters and component measurements.

• We adapt ShadowTutor to HD video semantic segmentation, a real-life application, and

evaluate its performance in terms of throughput, network traffic, accuracy, and robust-

ness.
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CHAPTER 1. INTRODUCTION

The rest of this paper is organized as follows. We review previous approaches in chapter

2, and provide background regarding our work in chapter 3. We explain the core idea and

mechanism of ShadowTutor in chapter 4, and show how it is adapted specifically to video

semantic segmentation in chapter 5. Then, we evaluate our framework in chapter 6. Finally,

we introduce related work in chapter 7 and conclude the paper in chapter 8.
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Chapter 2

Previous Approaches

Due to the resource constraints of mobile devices, DNN computations are often offloaded to

central cloud servers. Neurosurgeon [8] partitions a given DNN and collaboratively executes it

between the cloud and the server. It searches for an optimal partition point in terms of latency

and power consumption. Eshratifar et al [9] also seeks to partition DNNs, but by deriving op-

timal conditions for client power consumption and cloud resource constraints. MCDNN [10]

generates modified and specialized versions of the original model to trade-off accuracy for im-

proved resource usage. However, it only deals with models that perform image classification,

requires the execution of the model for every image in the training set for specialization (pre-

forwarding), and the generated model is mostly limited to being a layer-wise modification of

the original model. Moreover, adopting these approaches still require the communication of

every frame across the network, thereby pressuring network traffic greatly.

Another work by Yang et al. [11] splits video frames into partitions that are distributed

to slaves. It utilizes optical flow, i.e. the movement vectors between two frames, to exploit the

temporal coherence between frames. However, their system still requires the communication

of every single frame between the master and the slaves, since they utilize temporal coherence

only to occasionally reduce the amount of computation, rather than reducing network traffic.
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Chapter 3

Background

3.1 Knowledge Distillation
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Figure 3.1: Inference time knowledge distillation. The student’s parameters are updated by
viewing the teacher’s ouptut as the label.

Knowledge distillation [12] was initially proposed as a means of model compression. View-

ing a large teacher model’s output as a soft target, it formulated a knowledge distillation loss

between the output of a small student model and the soft target. Compared with hard targets,

which are one-hot vectors from the dataset, soft targets provide much more information about

the input data, and allow less variance in the gradients of the student model.

Figure 3.1 illustrates the concept of knowledge distillation applied to image classification.

Since it assumes inference time, the actual label yhard is not available. Thus, the student learns

just from the output of the teacher model ysoft. Is is also the case for ShadowTutor.

4



Chapter 4

ShadowTutor

Non-key
Frame

student student

Key
Frame

updated
student

Server

updated
student

updated
student

updated
student

… …

Client Server

Non-key
Frame

Non-key
Frame

Non-key
Frame

2

Key
Frame

Key
Frame

!𝑦 !𝑦 !𝑦 !𝑦 !𝑦 !𝑦

updated
student ( "𝑦) teacher (𝑦soft)

updated
student

2 student
metric

Key Frame Stride Key Frame Stride

72.4

Figure 4.1: High-level view of ShadowTutor. Dotted arrows denote network communication,
while other arrows denote data transfers within a device. Each frame is processed one by
one sequentially. Non-key frame inferences are done on-device with a small student network.
Sparse key frames are used to update the student’s weights via knowledge distillation from a
teacher.

Figure 4.1 shows an overview of ShadowTutor. All frames are processed sequentially in

temporal order. Determined by the key frame scheduling policy, if the current frame is a non-

key frame, its inference is handled entirely on-device by a lightweight student model. If the

current frame is a key frame, it is sent to the server. Using the key frame, the server updates

the a copy of the student’s weights via knowledge distillation from the teacher, and returns

the updated weights to the client. Network communication occurs only at sparse key frames,

allowing ShadowTutor to reduce the amount of network traffic drastically.
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CHAPTER 4. SHADOWTUTOR

4.1 System Components

Stripping away the distributed nature from ShadowTutor, there are five essential components

that comprise the system: video data, teacher inference, student inference, student training,

and key frame striding.

4.1.1 Video data

Video data reside in the mobile device, and the majority of the frames do not leave its home.

4.1.2 Teacher inference

By teacher, we refer to a heavy but high-quality neural network deployed to the server.

4.1.3 Student inference

By student, we refer to a lightweight neural network designed to run on the mobile device.

4.1.4 Student training

We emphasize that this process be distinguished from student pre-training; student training is

done repetitively during system runtime, and student pre-training is done exactly once when

the system is first organized.

4.1.5 Key frame striding

After training the student on the current key frame, the distance to the next key frame must

be determined.

4.2 ShadowTutor

Now, we aggregate the system components into ShadowTutor. Algorithm 1 and 2 shows the

runtime operations of the server and the mobile device (client) respectively. ShadowTutor of-

floads teacher inference and student training to the server. Needless to say, teacher inference

is an unacceptable workload for mobile devices, so offloading is a natural choice.

6



CHAPTER 4. SHADOWTUTOR

Algorithm 1: ShadowTutor-Server

Input: Student model student, teacher model teacher

1 ToClient(student)
2 while forever do
3 FromClient(frame)
4 label← Forward(teacher, frame)
5 student, metric← Train(student, frame, label)
6 ToClient(UpdatedPart(student), metric)

7 end

Algorithm 2: ShadowTutor-Client

Input: Target video stream video
Output: Student predictions

1 stride← MIN STRIDE
2 step← stride // First frame as key frame

3 updated← true // Whether student recv is done

4 FromServer(student)
5 foreach frame in video do
6 if step = stride then // Key frame

7 ToServerAsync(frame)
8 async recv ← FromServerAsync(student diff, metric)
9 step← 0

10 updated← false

11 end
12 prediction← Forward(student, frame)
13 step← step + 1
14 if not updated then
15 if step = MIN STRIDE then
16 stride← NextStride(stride, metric)
17 updated← true

18 end

19 end

20 end

4.3 Network Traffic and Throughput Bounds

In this section, we model ShadowTutor’s network traffic (amount of data transferred per unit

time) and throughput (number of frames processed per unit time) and derive formulae for

their lower and upper bounds. We use the notations defined in table 4.1. Note that tnet and

snet regard the transmission of one key frame and the corresponding updated student param-

eters.

Both network traffic and throughput rely on the system’s total execution time, which we

first model. ShadowTutor is designed to perform asynchronous inference for at most MIN STRIDE

many frames after a key frame. However, a mobile device may either be able to execute stu-

7



CHAPTER 4. SHADOWTUTOR

Table 4.1: Notations used for ShadowTutor. Those in the first block are identified after system
execution, and the second based on system component decisions.

Symbol Definition

n number of frames processed
d number of distillation steps taken
k number of key frames

tsi latency of student inference
tsd latency of one student distillation step
tti latency of teacher inference
tnet network latency associated with one key frame
snet networked data size associated with one key frame

dent inference and network operations entirely in parallel, or it may not support any form

of concurrency. Therefore, tc, the execution time of MIN STRIDE frames after a key frame, is

within the following bounds:

tc ≥ max(MIN STRIDE× tsi, tnet + tti)

tc ≤ MIN STRIDE× tsi + tnet + tti

(4.1)

Then, with tc, the total execution time for processing n frames can be modelled as follows:

ttot = (n− k × MIN STRIDE)tsi + dtsd + ktc. (4.2)

Now, we obtain a general formula for network traffic by dividing the total size of data

transfer by the total execution time:

ksnet
ttot

=
ksnet

(n− k × MIN STRIDE)tsi + dtsd + ktc
. (4.3)

8



Chapter 5

ShadowTutor for Video Semantic

Segmentation

5.1 Experiment setup

As the server, we use a desktop computer equipped with an AMD Ryzen 7 3700X CPU, one

NVIDIA RTX 2080ti GPU, and 32 GB memory. As the client, we use the NVIDIA Jetson

Nano embedded board [13], equipped with a quad-core ARM A57 CPU, a 128-core Maxwell

GPU, and 4 GB memory. Jetson Nano can deliver up to 472 GFLOPS for 32-bit floating

points, which is not an unrealistic number for modern mobile devices. For example, Google

Pixel 4’s Qualcomm Snapdragon 855 can deliver up to 954.7 GFLOPS (32-bit) with its built-

in Adreno 640 GPU [14]. As to network configurations, we limit both uplink and downlink

bandwidth to 80 Mbps, assuming strong Wi-Fi connection. We implement the system with

OpenMPI [15], PyTorch [16], and Detectron2 [17].

5.2 System Component Decisions

We target videos with 25–30 FPS from the Long Video Segmentation (LVS) dataset [18].

The student neural network is a simple fully-convolutional network.

9



CHAPTER 5. SHADOWTUTOR FOR VIDEO SEMANTIC SEGMENTATION
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Figure 5.1: The student model is a small fully-convolutional network.

5.3 Algorithm Parameter Decisions

We first determine THRESHOLD using the performance of existing video semantic segmentation

models.
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Chapter 6

Evaluation

Using the configurations from chapter 5, we show ShadowTutor’s effectiveness. Specifically,

we investigate the advantages of ShadowTutor in terms of throughput, network traffic, and

accuracy in sections 6.1, 6.2, and 6.3, respectively. Then, we push ShadowTutor to the limits

in terms of network bandwidth in section 6.4 and temporal coherence in section 6.5.

6.1 Throughput

Table 6.1 summarizes the latency of one distillation step (ms) and the mean number of dis-

tillation steps for partial and full distillation. Partial distillation reduces both the latency and

the number of distills, contributing to the throughput of the entire system. This result em-

pirically supports the claim that since the number of training steps is limited, it is quicker to

exploit a fixed distribution of features than to explore for better ones.

Table 6.2 lists the actual throughput of the system (frames processed per second) and

the total execution time. As expected, partial distillation outperforms full distillation in every

category. Moreover, ShadowTutor shows an improvement greater than 3x over naive offloading.

This is especially because ShadowTutor only communicates with the server on key frames, and

thus drastically reduces the latency for networking.

6.2 Network Traffic

We investigate the reduction of network traffic in terms of the amount of data transfer per

key frame and the ratio of key frames to all frames.

11



CHAPTER 6. EVALUATION

Table 6.1: Execution time and mean number of distillation steps

Distillation Partial Full

One step (ms) 13 18
Mean # of steps 3.83 4.44

Table 6.2: Frames processed per second (FPS) and execution time (s) in parenthesis

Camera Scene Partial Full Naive

fixed animals 6.55(762.5) 6.21(804.5) 2.09(2391.3)
fixed people 6.60(757.4) 6.43(777.0) 2.09(2391.3)
fixed street 6.50(768.8) 5.95(840.5) 2.09(2391.3)
moving animals 6.57(760.5) 6.27(796.5) 2.09(2391.3)
moving people 6.59(758.5) 6.36(785.8) 2.09(2391.3)
moving street 6.41(780.2) 5.55(901.0) 2.09(2391.3)
egocentric people 6.57(760.5) 5.89(848.5) 2.09(2391.3)

average 6.54(764.1) 6.08(822.0) 2.09(2391.3)

Table 6.3: Data transmitted on each key frame (MB).

Direction Partial Full Naive

To Server 2.637 2.637 2.637
To Client 0.395 1.846 0.879

Total 3.032 4.483 3.516

Table 6.3 shows the amount of data transfer (in MB) per key frame. Since it suffices to

send only the updated part of the student, partial distillation reduces network traffic compared

with full distillation. Against naive offloading, which sends the teacher prediction to the client,

ShadowTutor reduces the amount of data transfer by 13.77% per key frame, because the size

of the student is even smaller than one video frame.

Table 6.4 summarizes the proportion of key frames and the actual network traffic in

Mbps. The smaller the key frame proportion, the less frequent the network communication.

Partial distillation generally performs better than full distillation, and strictly better than

naive offloading. Especially, for the fixed-people category, the number of network communi-

cations is only 1.96% compared with the naive offloading scheme, yielding a surprising 98%

reduction.

The effects of the two reductions are multiplicative. Thus, compared with naive offload-

ing, ShadowTutor reduces the amount of network transfer per frame by 98.3% at most, and

95.3% on average.

On the other hand, the reduction in network traffic (amount of networked data per unit

12



CHAPTER 6. EVALUATION

Table 6.4: Key frames ratio (%) and network traffic (Mbps)

Camera Scene
Key frame ratio Network traffic

Partial Full Naive Partial Naive

fixed animals 4.73 4.60 100.0 7.51 58.51
fixed people 1.96 2.42 100.0 3.14 58.51
fixed street 7.78 7.43 100.0 12.27 58.51
moving animals 2.55 2.29 100.0 4.06 58.51
moving people 3.45 4.12 100.0 5.51 58.51
moving street 11.70 11.48 100.0 18.19 58.51
egocentric people 5.46 9.75 100.0 8.70 58.51

average 5.38 6.01 100.0 6.19 58.51

Table 6.5: Mean IoU of various settings. Wild = pre-trained student on its own, P = partial
distillation, F = full distillation, digit (1 or 8) = number of delayed frames before receiving
updated student weights.

Camera Scene Wild P-1 P-8 F-1 Naive

fixed animals 14.34 74.31 73.27 74.47 100.0
fixed people 13.91 81.69 81.39 81.36 100.0
fixed street 17.28 70.26 69.01 63.60 100.0
moving animals 22.31 74.94 73.80 75.21 100.0
moving people 17.62 74.82 74.06 75.55 100.0
moving street 18.65 60.48 58.61 52.94 100.0
egocentric people 14.80 70.42 68.87 61.41 100.0

average 16.99 72.42 71.29 69.22 100.0

time) is coupled with the improvement in throughput, showing a reduction of 89.4% on aver-

age. We especially note that network traffic has improved even if throughput had a threefold

improvement.

From table 6.4, all network traffic values obey the bounds, and the bounds are quite

tight, proving their usefulness.

6.3 Accuracy

Table 6.5 shows the mean Intersection over Union (mIoU) of various experiment settings. The

mIoU of every frame (key and non-key frames) is averaged to show that the student can

leverage temporal coherence to accurately perform inference on non-key frames. Note that all

accuracy values are evaluated against the teacher (Mask R-CNN) output, which is why the

naive approach always achieves perfect accuracy. However, we emphasize that the LVS dataset

has been labelled with the Mask R-CNN. Thus, in our case, we are measuring the accuracy

13



CHAPTER 6. EVALUATION
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Figure 6.1: Network bandwidth and system throughput

against the label in effect.

First, to show the need for shadow education, we run the pre-trained student on every

frame without any supervision from the teacher (denoted as Wild). As expected, its accuracy

suffers greatly, approaching the accuracy of random guessing. This is because the student is

too small to generalize to all kinds of scenes.

Next, we show the effect of shadow education. Recall that the mobile device receives the

updated weights in a non-blocking fashion, mitigating the effect of delays in network trans-

fer. Thus, we measure accuracy when there is the least delay (1 frame, P-1) and the most

(8 frames, P-8). ShadowTutor approaches the accuracy of the teacher with a student 100x

smaller, proving the effectiveness of knowledge distillation. Moreover, asynchronous inference

hardly hurts accuracy, showing that slightly outdated weights are still useful due to temporal

coherence.

Lastly, we compare partial distillation (P-1) and full distillation (F-1). Overall, partial

distillation is more accurate. When partial distillation is better, it outperforms full distillation

significantly, thereby providing an overall stable level of accuracy.

6.4 Robustness to Network Conditions

Fluctuations often happen during network communications between the cloud data center and

the client. Thus, in this experiment, we investigate the effect of reduced available network

14



CHAPTER 6. EVALUATION

bandwidth. Specifically, we set the bandwidth of the system to 90, 80, 60, 40, 20, 12, and 8

Mbps, and examine the throughput of the system.

Figure 6.1 shows the change in throughput against network bandwidth for ShadowTutor

and naive offloading. For ShadowTutor, we selected five video streams with different key frame

proportions; softball has the least key frames (1.72%), and southbeach (street CCTV) has the

most (12.4%).

The throughput of naive offloading decreases immediately in the face of low network

bandwidth because it has no mechanism to mitigate the increase in network latency. On the

contrary, the throughput of ShadowTutor remains remarkably stable until 40 Mbps, which is

half of the original bandwidth. For videos that have a small proportion of key frames, through-

put is retained even until 20 Mbps, since network latency takes up only a small fraction among

all latency components. Videos with more key frames lose throughput more quickly, but only

by 3x even if the network bandwidth is 10x narrower.

The region colored in gray represent the throughput bounds. All throughput values obey

the bounds. Especially, for low bandwidth settings, network latency dominates among all la-

tency components, reducing the variation in throughput brought about by the degree of con-

currency supported by the mobile device.

ShadowTutor’s robustness to the reduction in network bandwidth comes from asynchronous

inference. In effect, as long as the network latency is shorter than the inference latency of

MIN STRIDE many frames, ShadowTutor can hide the network latency almost completely. How-

ever, when the network latency is longer, the reduction in network bandwidth begins to take

a more direct impact to the system’s throughput since asynchronous inference can no longer

serve as a buffer.

6.5 Feasibility of Real-Time Inference

Finding promise from 25–30 FPS videos, we test ShadowTutor with videos with less temporal

coherence. Specifically, for every video, we re-sample the frames such that all videos have an

FPS of 7. Thus, by matching the input video’s frame rate with ShadowTutor’s throughput,

we simulate the real-time inference of frames fetched from the mobile device’s camera.

Table 6.6 shows the mean IoU and key frame proportion of the first 5000 frames of the

re-sampled videos. Surprisingly, even if the time distance between adjacent frames is elongated

by four times, ShadowTutor yields an average accuracy drop of less than 6%p and key frame
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CHAPTER 6. EVALUATION

Table 6.6: Mean IoU and key frame ratio for 7 FPS videos. Digit (1 or 8) = number of frame
delays before receiving updated student weights. Key frame proportion is in %.

Camera Scene Partial-1 Partial-8 Key frame

fixed animals 62.72 61.86 6.59
fixed people 80.44 80.08 1.97
fixed street 63.78 62.51 8.9
moving animals 68.63 66.78 4.84
moving people 73.66 72.91 4.15
moving street 48.92 46.99 12.34
egocentric people 67.57 66.09 5.44

average 66.53 65.31 6.32

proportion increase of less than 1%p. Therefore, this shows the feasibility of applying Shad-

owTutor to real-time inference applications. With optimized students, e.g. those that utilize

weight quantization/pruning or employ more efficient operations, ShadowTutor will be able

to handle higher frame rate videos in real-time, and its accuracy will increase further due to

stronger temporal coherence.

16



Chapter 7

Related Work

We briefly survey works related to extending or replacing parts of ShadowTutor.
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Chapter 8

Conclusion and Future Work

In this work, we developed ShadowTutor, a distributed video DNN inference framework that

encodes the temporal coherence in the video at hand into the parameters of a small student

model through intermittent partial knowledge distillation. Evaluations show its advantages

in terms of network traffic, throughput, accuracy, and robustness. Moreover, ShadowTutor

achieves this through a simple and elegant split between the server and the client, and with-

out complex DNN partitioning, server-side scheduling, or model-level optimizations tailored to

the experiment devices.

While our work focused on developing a distributed framework for video data, ShadowTu-

tor can also be extended to tasks other than video computer vision. That is, there are plenty

of sequence data, i.e. a collection of data points that are temporally coherent, that are handled

with DNNs. Examples of such sequence data include speech signals from a single speaker, a

sentence that requires translation, or a series of item recommendation requests from a single

user. Thus, by exploiting the temporal coherence embedded in various types of sequence data

through intermittent knowledge distillation, ShadowTutor has the potential to be extended to

any type of sequence data. Upgrading the knowledge distillation process, designing appropri-

ate model architectures for the teacher and the student, and resolving the issues that may

arise in the process will serve as a good future research direction.
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秒錄

최근 비디오 컴퓨터 비전 문제 해결에 심층 신경망이 큰 성공을 거두면서, 모바일 디바이스

에서 생성된 비디오에 대해 심층 신경망의 추론 결과를 얻는 것이 실용적인 관점에서 주목을 받고

있다. 이에 따라, 이전의 접근들은 클라우드 서버로 이미지의 심층 신경망 추론 계산량을 덜어내는

방법으로 모바일 디바이스의 상대적으로 빈약한 계산 성능을 보완하였다. 그러나 이미지가 아닌

비디오 데이터는 다르다. 모든 프레임의 정보를 네트워크 통신을 통해 교환하게 되면 네트워크

사용량이 극도로 증가할 뿐만이 아니라, 전체 시스템이 네트워크 혼잡 따위의 상황에 취약해지

기 때문이다. 그런 이유에서, 이 논문은 비디오 프레임간의 시간적 긴밀성을 활용하여 네트워크

부하를 줄이는 데에 그 의의를 둔다. 이를 위해 이 논문에선 ShadowTutor라는 프레임웍을 제

안한다. 이는 분산 컴퓨팅 환경에서 심층 신경망의 추론을 다루며, 학생 신경망으로의 간헐적인

지식 증류 기법을 통해 네트워크 통신의 횟수를 감소시킨다. 또한, 부분적 지식 증류라는 기법을

활용하여, 각 네트워크 통신의 데이터량 또한 감소시킨다. 구체적으로는 다음과 같다. 서버에는

용량이 크고 대부분의 데이터에 대해 좋은 성능을 내는 선생 신경망을, 모바일 디바이스에는 작

지만 현재 데이터에 전문화된 학생 신경망을 둔다. 이후, 드문드문 선택되는 키 프레임에 대해,

서버는 선생 신경망의 추론 결과를 데이터의 라벨로 보고 학생 신경망 가중치의 일부를 훈련시킨

뒤 모바일 디바이스에게 바뀐 부분을 전송한다. 이 논문에선 고화질 비디오의 의미론적 분할을

통해 ShadowTutor의 효과성을 입증하고자 한다. 실험 결과, 네트워크 통신의 총 데이터 용량이

평균적으로 95% 감소하였다. 또한, 시스템의 단위시간당 처리량이 3배 이상 증가하였으며, 네트

워크 대역폭의 감소에 대해서도 처리량을 유지하는 견고성을 보였다.

주요어: 심층 신경망, 분산 추론, 지식 증류, 비디오 의미론적 분할


