Problem 1. Show that there exists no nontrivial unramified extensions of \mathbb{Q} .

Solution: If K/\mathbb{Q} is a nontrivial number field, then $|\operatorname{disc} K| > 1$. But then $\operatorname{disc} K$ has a prime factor so that some prime ramifies in K.

Problem 2. Complete the following:

- (a) How does one prove a cotheorem?
- (b) Compute $\int \cos x \ dx$.
- (c) How does one square $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$?

Solution:

- (a) Use rollaries.
- (b) We have

$$\int \cos x \, dx = \sin x + C \tag{1}$$

We can check (1):

$$\frac{d}{dx}\left(\sin x + C\right) = \cos x$$

(c) This is routine.

Problem 3. Prove that $\sqrt{2}$ is irrational.

Proof. Assume that $\sqrt{2} = \frac{a}{b}$, where $a, b \in \mathbb{Z}$. Without loss of generality, we may assume $\gcd(a, b) = 1$. Then we have

$$\sqrt{2} = \frac{a}{b}$$

$$\sqrt{2}^2 = \left(\frac{a}{b}\right)^2$$

$$2 = \frac{a^2}{b^2}$$

$$a^2 = 2b^2$$
(2)

But then from (3), we know that a^2 is even so that a is even. But then we must have

$$2a^2 = b^2$$

so that b^2 is even, implying b is even. But then $gcd(a, b) \ge 2$, a contradiction.