Problem 1. Show that there exists no nontrivial unramified extensions of \mathbb{Q}.

Solution: If K / \mathbb{Q} is a nontrivial number field, then $|\operatorname{disc} K|>1$. But then disc K has a prime factor so that some prime ramifies in K.

Problem 2. Complete the following:
(a) How does one prove a cotheorem?
(b) Compute $\int \cos x d x$.
(c) How does one square $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$?

Solution:

(a) Use rollaries.
(b) We have

$$
\begin{equation*}
\int \cos x d x=\sin x+C \tag{1}
\end{equation*}
$$

We can check (1):

$$
\frac{d}{d x}(\sin x+C)=\cos x
$$

(c) This is routine.

Problem 3. Prove that $\sqrt{2}$ is irrational.
Proof. Assume that $\sqrt{2}=\frac{a}{b}$, where $a, b \in \mathbb{Z}$. Without loss of generality, we may assume $\operatorname{gcd}(a, b)=$ 1. Then we have

$$
\begin{align*}
\sqrt{2} & =\frac{a}{b} \\
\sqrt{2}^{2} & =\left(\frac{a}{b}\right)^{2} \tag{2}\\
2 & =\frac{a^{2}}{b^{2}} \\
a^{2} & =2 b^{2} \tag{3}
\end{align*}
$$

But then from (3), we know that a^{2} is even so that a is even. But then we must have

$$
2 a^{2}=b^{2}
$$

so that b^{2} is even, implying b is even. But then $\operatorname{gcd}(a, b) \geq 2$, a contradiction.

