
Honours Individual Project Dissertation

FORMAL MODELLING AND ANALYSING
OPTIMAL STRATEGIES FOR THE
RESTLESS MULTI-ARMED BANDIT

PROBLEM

Archit Gupta
September 5, 2020

i

Abstract

Decision-making in noisy and changing environments requires a fine balance between exploiting
knowledge about good courses of action and exploring the environment in order to improve
upon this knowledge.

In this project we will look at the Restless Multi-armed bandit (RMAB) problem which are a
class of sequential resource allocation problems concerned with allocating one or more resources
among several alternative (competing) projects to model an agent to solve the exploration vs
exploitation problem using Probabilistic model checking. RMAB is a challenging problem that
is known to be PSPACE-hard in general.

Probabilistic model checking is a formal verification technique which is use to model and
analyse stochastic systems such as these and to prove functional correctness of a system. The
technique is used to study a wide range of quantitative properties of models like performance
and reliability properties taken from many different application domains including computer
and communication systems.

In this project, we give an overview of the probabilistic model checking tool PRISM, focusing
in particular on models of discrete-time Markov chains and Markov reward models, and how
these can be used to analyse performability properties. In particular, we use probabilistic model
checking to analyze optimal strategies for the restless multi-armed bandit problem.

i

Acknowledgements

I would like to express my gratitude towards Dr. Gethin Norman for supervising this project
and providing his invaluable advice and feedback throughout the academic year.

i

Education Use Consent

I hereby grant my permission for this project to be stored, distributed and shown to other
University of Glasgow students and staff for educational purposes. Please note that you are
under no obligation to sign this declaration, but doing so would help future students.

Signature: Archit Gupta Date: September 5, 2020

ii

Contents

1 Introduction 1
1.1 The Problem 1
1.2 Motivation 1
1.3 Aims 2
1.4 Outline 2

2 Background 3
2.1 Multi-armed Bandit 3
2.2 Restless Multi-armed Bandit 4
2.3 Applications 4
2.4 Chapter Summary 5

3 Probabilistic Model Checking 6
3.1 Model Checking 6
3.2 Probabilistic Model Checking 7
3.3 PRISM 8
3.4 Chapter Summary 8

4 Probabilistic models 9
4.1 Discrete Time Markov Chains 9
4.2 Markov Decision Process 15
4.3 Partially Observable Markov Decision Process 18
4.4 Chapter Summary 20

5 Analysis 21
5.1 Tools Developed 21
5.2 The Strategies 22

5.2.1 Two-armed Bandits 26
5.2.2 Three-armed Bandits 32
5.2.3 Four-armed Bandits 36

5.3 Chapter Summary 37

6 Conclusion 38
6.1 Summary of the project 38
6.2 Future Work 38

Appendices 39

A Obtaining and Running PRISM Extension 39

B Project Directory Structure 40

C Using the Tools 41

Bibliography 42

1

1 Introduction

This chapter provides the backdrop for this project. It not only defines the problem, but also
explains why it is important, and the aim of this project.

1.1 The Problem
Mahajan and Teneketzis (2008) describes the multi-armed bandit problem (MAB) in probability
theory, as a classical reinforcement learning problem that illustrates the exploration-exploitation
trade-off dilemma. In the problem, we try to maximize our gain when a fixed limited set of
resources are to be allocated between competing (alternative) choices, when knowledge about
choices are only partially known at the time of allocation, and may become better understood by
allocating resources as time passes. The name comes from imagining a gambler at a row of slot
machines, who has to decide which machines to play, how many times to play each machine
and in which order to play them, and whether to continue with the current machine or try a
different machine. The problem also falls into the broad category of stochastic scheduling.

According to Gittins et al. (2011), in the MAB problem, we try to model a realistic agent that tries
to balance the exploration-exploitation trade-off, in order to maximize their total value over the
period of time considered. The agent tries to acquire new knowledge about the system at every
state known as exploration while also attempting to optimize their decisions based on existing
knowledge gained from the system known as exploitation. The problem requires balancing
reward maximization based on the knowledge already acquired with attempting new actions to
further increase knowledge.

The multi-armed bandit model has many variations including the Binary multi-armed bandit or
Bernoulli multi-armed bandit, which issues a reward of one with probability ?, and otherwise a
reward of zero. In this project we will focus on a extended formulation of the MAB known as
restless multi-armed bandit (RMAB) which has each arm representing an independent Markov
machine (discussed in Chapter 3) (Dai et al. 2011). An arm is a representation of an action chosen
by the agent. Each time a particular arm is played, the state of that machine advances to a new
one, chosen according to the Markov state evolution probabilities. There is a reward depending
on the current state of the machine. In the RMAB variation, the states of non-played arms also
evolve over time.

1.2 Motivation
In the RMAB problem, each machine provides a random reward from a probability distribution
specific to that machine. The objective of the gambler is to maximize the accumulated rewards
earned through a sequence of actions performed by it. The crucial trade-off the gambler faces
at each trial is between exploration to get more information about the expected rewards of the
other machines and exploitation of the machine that has the highest expected reward. The
trade-off between exploration and exploitation is also faced in machine learning. In practice,
multi-armed bandits have been used to model problems such as managing research projects in a

2

large organization like a science foundation or a pharmaceutical company. This is in order to
allocate fixed budgets to a variety of research projects that show a high degree of uncertainty at
the start, but a clearer outcome (or lack of it) as they progress.

According to Whittle (1988), when designing systems (hardware or software) it is important to
know whether or not your system will operate as expected/required. For example we do not
want to find out that our nuclear power plant control system after implementation is not as safe
as was expected. There are several techniques available that can be used to verify the functional
correctness of a system. Examples of such techniques are: theorem proving, simulation/testing
and model checking (Oldenkamp 2007). This project focuses on the last technique, namely
formal verification by means of model checking. The goal of this technique is to predict system
behaviour, or more specifically, to formally prove that all possible executions of the system
conform to the requirements.

1.3 Aims
Automated verification techniques such as probabilistic model checking used in this project are
useful to analyse quantitative properties of these systems and to build confidence in their functional
correctness. The objective of this project is to model the restless multi-armed bandit problem
using Discrete Time Markov Chains (DTMCs), Markov Decision Process (MDPs) and Partially
Observable MDPs (POMDPs). There will be experiments using certain hypothesis supported by
generated strategies based on models with different numbers of bandits with various different
probabilities. To achieve this we will use PRISM (Kwiatkowska et al. 2011), a probabilistic model
checking tool to model and analyse our RMAB system.

1.4 Outline
In this project, we look at the formal modelling and analysis of the optimal strategies of the
RMAB problem. This included studying about the problem and models first and then modelling
them in PRISM. I will also present the tools used to automate and build the strategy graphs. The
document is divided into the following chapters:

Chapter 2 - Background and Application This chapter discusses background on the problem
and some real world applications.

Chapter 3 - Probabilistic Model Checking This chapter discusses the background knowledge
needed on probabilistic model checking.

Chapter 4 - Probabilistic Models This chapter discusses the three models (DTMC, MDP and
POMDP) and their formal modelling in PRISM in detail .

Chapter 5 - Analysis and Tools This chapter discusses the tools developed and the analysis of
the optimal strategies.

Chapter 6 - Conclusion and Future Work This chapter summarises the project report and
suggests some ideas for future work.

3

2 Background

In this chapter we discuss the RMAB problem in detail by explaining multi-armed bandits,
extending them to restless multi-armed bandits and also provide some real world applications.

2.1 Multi-armed Bandit
The multi-armed bandit problem is a classic version of the problem of optimal allocation of
activity under certainty (Akin 2017). From the algorithmic point of view, consider an agent that
has no knowledge of the environment and can only learn by trial and error from a single reward
signal which notifies the agent whether it failed or succeeded. Imagine a player in a casino,
purchasing = coins with which they want to play on slot machines called “Multi-Armed Bandit"
(MAB) as each slot machine’s lever or handle represents an “Arm". Further, we assume that each
slot machine or arm can give a reward based on a probability distribution for each on and each
arm’s reward is a realization or sample from that distribution. It is assumed the player, does not
initially know which arm will give the best payout (i.e. has the highest chance of reward), and
therefore they must use a few coins to explore the system, and compare the arms. Now, the
player has rough estimates on the potential rewards from the arms and must decide to either
keep exploiting the assumed arm to yield the best reward so far found or continue to explore the
rest of the arms with the finite coins. This tension between exploration and exploitation is the
heart of the MAB Family of Problems.

We can also think about the problem as a class of sequential resource allocation problems by
imagining a player with a single resource which they have to allocate to one project at each finite
time step among a number of alternative or competing projects. When the allocation of the
resource is done, that project changes its state while the rest stay static. Further, the rewards or
the return on investments from each project can be different. Therefore, Most MAB algorithms
use the player’s regret as their measure of effectiveness. The regret of a system is the difference
between the arm they chose and the “best" arm that the they could have chosen at that time, had
they known all of the probability distributions.

There are of course many variants of this problem or ways to adjust the classic setup to fit
numerous real-world situations such as: one or multiple resources available for allocation, new
projects appearing over time, all projects changing each time step, or even a strategy which
chooses the rewards of each arm. Consider a casino with slot machines, each of these "arms"
denoted by 8 ∈ . At each discrete time step, = = 1, 2, 3, . . . , the player must decide which of the
 arms to pull. Each arm, 8, returning a random, positive, real-valued, reward in the range of
[0, 1]. The rewards returned from each arm, immediately after pulling that arm, are independent
and identically distributed as well as independent of the play of the other arms. Therefore, the
player or MAB algorithm must decide which arm to pull, at time =, based on the rewards received
i.e the knowledge gathered up through time = − 1. The goal therefore, is to maximize the total
expected reward by time .

4

2.2 Restless Multi-armed Bandit
In this project we focus on the above casino problem mentioned above, modeled as an RMAB, a
generalization of the classic MAB problem. In the problem there are several arms, each of which
is modelled as a Markov chain. In contrast to the above MAB model, in RMAB, the state of
each arm continues to evolve even when it is not played. More specifically from Liu et al. (2013),
each arm changes its state according to an unknown Markovian transition rule when the arm
is played or not played. An arm can have multiple states which represents different values they
are assigned with, for example a coin has two states, namely heads and tails. The states of the
arms are unknown, and at each time step an arm is played. The played arm reveals its state and
yields a reward, which is a function of the state. The objective is to find a policy that maximises
the total reward over some period of time. RMAB problems have been shown to be, in general,
PSPACE hard (Papadimitriou and Tsitsiklis 1994), and our knowledge on the structure of the
optimal policy for general RMAB problem is limited.

2.3 Applications
We now look at three Real World applications where a problem is formulated into an RMAB
problem.

Example 1. Wireless communication devices can often operate on several alternative channels.
For example, phones are equipped with base-station communication capability along with WiFi
and Bluetooth communication may use several frequency bands (Kuhn and Nazarathy 2017). To
maximize the long-run average throughput which is the amount of items that can be transferred
at a given time, automatic decision support systems in such devices need to decide which channels
to use. An optimal decision policy needs to take into account that, due to time and resource
constraints, the state of a channel is only observed when it is selected for transmission. Therefore,
with respect to long-run average throughput, the greedy strategy of just exploiting the channels
assumed to yield the currently highest transmission rate is not necessarily optimal and rather,
it may be favourable to give more priority to the exploration of channels of uncertain quality.
Therefore, it is crucial to make the trade-off.

At first, the channels operate as independent Markov processes and the transmitter has the
choice to use from the available channels at every discrete time step and they cannot be used in
parallel due to hardware limitations, resource availability and/or energy constraints. We assume
that the models and their parameters are known, and the channel we pick, yields an immediate
reward that depends on the state of the channel which can be for example, the number of bits
it can transfer successfully. In an ideal situation the transmitter knows the states of all channels,
and therefore will choose the channels in a way that achieves the largest throughput over time.
However, the nature of communication channels is often stochastic and due to resource constrains
in the real world, the transmitter does not know the current state of each channel with certainty
and the state of a channel is only observed when selected. The unselected channels on the other
hand are not observed in this time instance. This type of problem is a special case of a RMAB.

Example 2. From Blasco and Gündüz (2015) we know, low power wireless networks, such as
machine-to-machine and wireless sensor networks, can be complemented with energy harvesting
(EH) technology to extend the network lifetime. Due to the battery size, a low-power wireless
node has a limited lifetime but when an EH device and a rechargeable battery can be added, its
lifetime can be prolonged significantly. However, due to the random nature of the energy sources
where the energy in arbitrary amounts arrives at random times and energy availability being
scarce at the EH nodes, to make the most out of the scarce energy, it is important to optimise

5

the scheduling policy of the wireless network by studying an online scheduling of low-power
wireless nodes by an access point (AP).

The nodes are powered by rechargeable batteries and equipped with EH devices and at
each time step (TS) a node which is dependent on the channel conditions or the availability of
data at the node is operative with a certain probability distribution. The EH process at each node
is modelled as an independent Markov process, and at each TS, a node will either harvest one
unit of energy or will not harvest any. At each TS, the AP is in charge of scheduling and the EH
attaches to the available orthogonal channels. A node transmits only when it is operative and is
scheduled at the same time. Hence, at each TS the AP learns the EH process states and battery
levels of the operative nodes that are scheduled, but does not receive any information about the
other nodes. The AP is interested in maximising the expected accumulated throughput within a
given time frame. Therefore, this problem is modelled into an RMAB problem.

Example 3. Unmanned aerial vehicles (UAVs) are already actively being used in military operations
and are being investigated for civilian applications such as environmental control and monitoring.
Although there are technological advancements made everyday, it seems clear that a major
challenge for future developments will be to increase the level of autonomy of these systems (Le
Ny et al. 2008). Lets consider a UAV with " mobile sensors which are tracking # sites where
> " and each site can be in one of two states (B1 or B2) at each period of time. The system
observes the state of the site if visited by a sensor. For example, marine vessels have bilges where
excess water and oily wastes can collect, therefore the state here represents if the ship’s bilge
is dumping excess which is state B1 and state B2 if otherwise. However, we also know that the
states of the sites evolve independently of each other and and as Markov chains with known
probabilities and therefore, at a given time period, we can estimate the states of the sites that are
not visited by any sensor. Now, lets take that whenever a sensor visit a site which happens to be
in state B1, we receive a reward and if the site is in state B2, we do not obtain a reward. The goal
is to allocate the sensors at each time period, in order to maximize the expected total discounted
cost over a given time frame. Through this model, we capture the following trade-offs. It is
advantageous to explore and keep a good knowledge of the states of the sites in order to take an
optimal decision about which sites to visit next. However, the estimation problem is not the end
goal, and so there is a balance between visiting sites to gain more information and collecting
rewards. The rewards are associated with the detection of a dumping event (state B1 for a ship).
However, if the UAV is not present during the dumping, the event is missed.

2.4 Chapter Summary
In this chapter, the MAB problem was discussed and the extension of the problem we look at
which is the RMAB problem where there are several arms and each arm has a potential for a
reward and also evolves independently of the other arms and also when they are not played and
how we need to balance exploring the system using resources and exploit the system for the best
reward. It was also shown how an allocation under uncertainty and the exploration-exploitation
trade off problem relates to the real world problems.

On the basis of the formulation of the problem, the next chapter identifies the technique and tool
we use to model and analyse the problem.

6

3 Probabilistic Model Checking

In this chapter, we introduce model checking and probabilistic model checking, then the mod-
elling language and tool PRISM which was used in this project to develop and analyse the
models.

3.1 Model Checking
Clarke et al. (1999) defines model checking as a method for formally verifying and proving
functional correctness of finite-state concurrent or parallel systems. Given a model of a system,
model checking exhaustively and automatically checks whether the model meets a given specifi-
cation. Specifications about the system are expressed as temporal logic formulas, and efficient
symbolic algorithms check if the specification holds or not by traversing the models and extremely
large state-spaces can often be traversed in minutes. According to Clarke and Emerson (1982)
both the model of the system and the specification are formulated in some precise mathematical
language in order to solve such a problem algorithmically. The problem is formulated as a
task in logic, namely to check whether a given structure satisfies a given logical formula. This
general concept applies to many kinds of logics and suitable structures. A simple model checking
problem is verifying whether a given formula in the propositional logic is satisfied by a given
structure. The essential idea behind model checking is shown in Figure 3.1. A model-checking
tool accepts system requirements or design (called model) and a property (called specification)
that the final system is expected to satisfy. The tool then outputs yes if the given model satisfies
given specification and generates a counterexample otherwise where it details why the model
does not satisfy the specification. By studying the counterexample, you can pinpoint the source
of the error in the model, correct the model, and try again. The idea is that by ensuring that
the model satisfies enough system properties, we increase our confidence in the correctness of
the model. A logical approach leads to unambiguous specifications and model checking leads to
automatic reasoning.

As the name suggests, model checking is performed on a model of a system (Oldenkamp 2007).
The model is usually generated from a high level system description language, such as process
algebra or Petri net. Typically, these generated models are non-deterministic finite-state automata
which are transition systems that describe the system’s possible behaviours. They can be considered
as directed graphs consisting of a finite set of states (vertices) labelled with atomic propositions
and state transitions (edges) that show how the system can change from one state to another.
The atomic propositions represent the basic properties that hold in each state. Once the system is
represented by such a model we can check if the model satisfies a formal specification (i.e. if it has
certain properties). From Clarke and Emerson (1982), the properties that are checked against
the system model are expressed using temporal logics, such as LTL (Linear Time Logic) or CTL
(Computation Tree Logic). For example, CTL can specify that when some initial condition is
satisfied (e.g., all program variables are positive or no cars on a highway straddle two lanes), then
all possible executions of a program avoid some undesirable condition (e.g., dividing a number
by zero or two cars colliding on a highway). These logics can express properties on states or
paths in the automata. Once a model and property have been formulated the model checking
process will perform a systematic state-space exploration to verify if the property holds. This

7

form of traditional model checking focuses on delivering a 100% accurate guarantee whether or
not a property holds. There are many cases where giving an absolute guarantee is not possible.
Examples are communication protocols, such as Bluetooth or IEEE 802.11 Wireless LAN, that
have to deal with a certain probability of message loss. This is where probabilistic model checking
can be utilized.

Figure 3.1: Model Checking Approach

3.2 Probabilistic Model Checking
According to Oldenkamp (2007) probabilistic model checking is an automatic formal verification
technique for the analysis of systems which exhibit stochastic behaviour i.e exhibit probabilistic
behaviour. The technique is similar to model checking as discussed earlier. The major difference
is that a probabilistic model contains additional information on the likelihood or timing of
transitions between states, or in simpler terms, it can model stochastic behaviour. Probabilistic
model checking refers to a range of automated techniques for calculating the probability of the
occurrence of certain events during the execution of the system, and can be useful to establish
properties such as “shutdown occurs with probability at most 0.01" and “the video frame will
be delivered within 5ms with probability at least 0.97". Models can also be augmented with
Costs and Rewards which can be properties like the reward accumulated along a path until a
certain state has been reached known as “Reachability reward" or “Cumulative reward" properties
which for a given time bound associate a reward with each path of a model, for example, “the
expected time taken to reach from a state s to a state where z equals 2" or “the expected number
of lost requests in 15.5 time steps". Applications range from areas such as randomized distributed
algorithms to planning and AI, security, and even biological process modelling or quantum
computing.

A probabilistic model checker also has a similar behaviour shown in Figure 3.1 where it takes as
input a probabilistic property and a probabilistic model and delivers the result "Yes" or "No" (i. e.
whether or not the property is satisfied) or quantitative results. From these inputs, a model checker
can construct a model of the system, which is a labelled state-transition system where each state
represents a possible combination or arrangement and each transition represents an evolution
over time of the system from one state to another. It is then possible to automatically verify
whether or not each property is satisfied, based on a systematic and exhaustive exploration of the
constructed state-transition system. We know from Forejt et al. (2012), in probabilistic model
checking, the models are augmented with quantitative information regarding the likelihood that
transitions occur and the times at which they do so. Model checking reduces to an optimisation
problem, namely determining the maximum (or minimum) probability (or expected cost/reward)
achievable by the model and the reward operator enables the computation of expectations with
respect to the underlying probability space. In practice, these models are typically Markov chains
or Markov decision processes. The following sections elaborate on the on the tool we use for this
project.

8

3.3 PRISM
Kwiatkowska et al. (2011) defines a probabilistic model checker tool can verify if a system - which
is described by a model, written in a formal language - satisfies a formal specification, which is
expressed using logics, such as Probabilistic Computation Tree Logic (PCTL). In simple terms,
the purpose of the PRISM tool is to construct a probabilistic model, from high-level descriptions,
and then analyse one or more properties. PRISM is a probabilistic symbolic model checker,
developed at the University of Birmingham (United Kingdom) for the modelling and analysis of
probabilistic systems. It has been used to analyse systems from many different application domains,
including communication and multimedia protocols, randomised distributed algorithms, security
protocols, biological systems and many others.

From Kwiatkowska et al. (2010), system models are described using the PRISM programming
language, which is a high-level state-based description language. In this language a system is
described as the parallel composition of a set of modules. A module state is determined by a set
of finite-range variables and its behaviour is given using a guarded-command based notation.
Communication between modules takes place either via global variables or synchronisation
over common action labels. Besides its own model description language, PRISM supports a
subset of PEPA, which is a stochastic process algebra. PRISM also provides indirect support for
model checking probabilistic timed automata which include probability, non-determinism and
real-time using clocks. In PRISM it is possible to either determine if a probability satisfies a
given bound or obtain the actual value. There is also support for the specification and analysis of
properties based on costs and rewards.

3.4 Chapter Summary
In this chapter, we discussed the probabilistic model checking technique which given a model
and its requirements, automatically verifies and proves the functional correctness of the model and
can either simply give a “yes" or “no" answer or some quantitative results. We also introduced the
model checking tool PRISM which we used in this project to model and analyse the problem.

On the basis of the background of model checking and the problem, the next chapter discusses
the three models and how to model them in PRISM.

9

4 Probabilistic models

In order to model check a system that exhibits stochastic behaviour we will first need to build a
formal probabilistic model of that system. There are several commonly used probabilistic model
representations for stochastic system, for example:

• Discrete-Time Markov Chains (DTMC)
• Continuous-Time Markov Chains (CTMC)
• Markov Decision Process (MDP)
• probabilistic automata (PAs)
• probabilistic timed automata (PTAs)

From Oldenkamp (2007) we know, that these models usually form a combination of probability
theory and graph theory. They consist of states, transitions, and arcs that connect them. From
now on we will focus on discrete time models. These particular models are used by the PRISM
model checker tools studied in this thesis. Such models should be considered as a transition system,
where we can move from one state to another and the choice of which state to go to depends
on some probability distribution. Moving from one state to another is referred to as “making
a transition”. A more formal definition will be presented later on in this chapter. We consider
three different types of models, which are supported by PRISM, and use them to model our
RMAB problem while providing the PRISM version of the models used in this project namely:

1. DTMC - Discrete-Time Markov Chain
2. MDP - Markove Decision Process
3. POMDP - Partially Observable Markov Decision Process.

4.1 Discrete Time Markov Chains
Sigman (2008) defines a stochastic process in discrete time = ∈ ℕ = {0, 1, 2, . . .} as a sequence of
random variables -0, -1, -2, . . . denoted by - = {-= | = ≥ 0} (or just - = {-=}). We refer to the
value -= as the state of the process at time =, with -0 denoting the initial state. If the random
variables take values in a discrete space such as the integers ℤ = {. . . , 2, 1, 0, 1, 2, . . .} (or some
subset of them), then the stochastic process is said to be discrete-valued.

Stochastic processes are meant to model the evolution over time of real phenomena for which
randomness is inherent. For example, -= could denote the price of a stock = days from now, the
population size of a given species after = years, the amount of bandwidth in use in a telecom-
munications network after = hours of operation, or the amount of money that an insurance risk
company has right after it pays out its =th claim. The insurance risk example illustrates how “time”
= need not really be time, but instead can be a sequential indexing of some kind of events. Other
such examples: -= denotes the amount of water in a reservoir after the =th rain storm of the year,
the amount of time that the =th arrival to a hospital must wait before being admitted, the outcome
(heads or tails) of the =th flip of a coin.

A discrete time Markov Chain is a sequence of random variables -0, -1, . . . , indexed by time
taking values in some state space, with the property that a future state -C+1 is only dependent

10

on the current state -C = G , and therefore conditionally independent of the past. We call this
independence theMarkov property. While this may seem like a rather large assumption to make,
if needed, we can embed information about the past into the current state thereby maintaining
this assumption without losing the mathematical power of the memoryless property of Markov
Chains.

According to Oldenkamp (2007) DTMCs are stochastic models of systems with countable state-
space that change their states at times = = 0, 1, 2, ... and have the following property: if the system
enters state B at time =, it stays there for exactly one unit of time and then jumps to state B ′ at time
= + 1 with probability % (B, B ′), regardless of its history up to and including time = − 1. Formally
we have the following definition Kwiatkowska (2003).

Definition 1 A DTMC is a tuple D = ((, B̄, %, �%, !, ') where:
• (is a set of state;
• B̄ ∈ (is in initial state;
• % : (× (→ [0, 1] is a probabilitiy matrix such that

∑
B′∈(% (B, B ′) = 1;

• �% is a set of atomic propositions;
• ! : (→ 2�% is a labelling with atomic propositions that are true in state.
• ' = ('(;')) is a reward structure where '(: (→ ℝ is a state reward function and ') : (G(→ ℝ

a transition reward function.
The definition shows that states are labelled with atomic propositions, they indicate for instance
the status of the system (e.g. being on and off). The system can change state according to a
probability distribution given by the transition probability matrix. A transition from state B to B ′
can only take place if % (B, B ′) > 0. If % (B, B ′) = 0, no such transition is possible. The system can
occupy the same state before and after the transition. A sequence of states and transitions forms
a path c , where a path is defined as a finite or infinite sequence B0

?0−→ B1
?1−→ ...

?8−1−−−→ B8 ... with
8 ∈ #, B8 ∈ (, and ?8 (0,1] such that ?8 > 0 ∧ ?8 = % (B8 , B8+1) for all 8 ≥ 0 (Oldenkamp 2007). We can
define a probabilistic measure %A>1c (�) over the set of paths %0Cℎc (�).
DTMCs (and other probabilistic models) can also be augmented with reward information,
which allows reasoning about a wide range of additional quantitative measures. Formally from
Kwiatkowska et al. (2007), for a DTMC �, we included a reward structure ' = ('(;')) that
allows specification of two distinct types of rewards mentioned. The state reward '(is the reward
acquired in state B per time step, i.e. a reward of A (B) is incurred if the DTMC is in state B for 1
time step and the transition reward ') is acquired each time a transition between states B and B ′
occurs. Reward structures can be used to represent a variety of different aspects of a system model,
for example “the number of messages successfully transmitted by a protocol” or “the amount of
time that a server spends operational”. Note that state rewards are sometimes called cumulative
rewards while transition rewards are sometimes referred to as instantaneous or impulse rewards.

A DTMC admits probabilistic choice only, which substantially differs from non-determinism:
the frequency of a probabilistic edge being taken is determined by the distribution, whereas
nondeterministic choice is made by the environment which has complete freedom to select any
of the alternatives. Note also that there is no notion of real time, though reasoning about discrete
time is possible through state variables keeping track of time and ‘counting’ transition steps.
Below is the qualitative measure which together form the basis for probabilistic model checking
of DTMCs. We will also extend this to our MDP and POMDP models.

Expected Reachability (Kwiatkowska et al. 2006) The measure we consider is expected reacha-
bility, denoted by E (Expectation) which refers to the expected reward accumulated, starting in
state B, before reaching a set � ⊆ (of target states.

11

We define Expected Reachability for a path c , by

Ec� (�)
345
=

∫
c ∈%0Cℎc (�)

A (�, c)3%A>1c�

where A (�, c) is the total reward accumulated until a set of states state � is reached along for any
infinite path c .

In PRISM properties such as expected reachability are defined using the property specifications
which are used to analyse the models. Properties of PRISM models are expressed in PCTL. The
operators %∼? [·], (∼? [·] and '∼A [·] by default include the probability bound ∼? or reward bound
∼ A . However, in PRISM, we can also directly specify properties which evaluate to a numerical
value by replacing the bounds in the % , (and ' operators with =?, as illustrated in the following
PRISM specification examples:

• %<0G=? [� <=)<4BB064B_;>BC > 10] - is the maximum probability of messages greater than
10 have been lost by time)

• (=? [@D4D4_B8I4/<0G_B8I4 > 0.75] - the long-run probability where a queue’s size is more
than 75% full

• '=? [(] - the long-run expected queue-size.

The meaning ascribed to these properties are dependent on the definitions of the atomic proposi-
tions and reward structures. The property we will use to analyse our models is:

• '=? [� “?A>?”] - corresponds to the expected reward cumulated along a path until a state
satisfying property “prop" is reached.

Figure 4.1: A bandit state transition

Example 1. We represent a DTMC as a transition diagram, Figure 4.1 shows a simple example of
a DTMC � = (�, 1̄, %, �%, !) where states are drawn as circles and transitions as arrows, labelled
with their associated probabilities. The initial state is indicated by an additional incoming arrow.
The DTMC � has two states: � = {10, 11}, with initial state 1̄ = 10. The transition probabilities
are defined as ?8, 9 which is the probability of transition from state 8 to 9 . The atomic propositions
used to label states are taken from the set AP = {o� , on}. Here, the DTMC models a simple
process where a bandit changes its state based on a probability distribution. After one time-step,
it enters the state 10 from which, with probability ?00 it waits another time-step, with probability
?01 it changes its state from 0 to 1, and with probability ?10 it changes its state back. In the latter
case, the process restarts. There is also a reward of 1 associated whenever the bandit is in state 11.
The labelling function allows us to assign meaningful names to states of the DTMC:

!1 (10) = {o� }, !1 (11) = {on}.

12

Model 1 Example DTMC

1:
dtmc //the model type

const double p01 = 0.3 //transition probability from 0 to 1
const double p10 = 0.4

module bandit1
b1: [0..1]; //variable

[] b1=0 -> p01:(b1'=1) + (1-p01):(b1'=0); //when b1=0. p01 is the
probability for becoming b1=1

[] b1=1 -> p10:(b1'=0) + (1-p10):(b1'=1);

endmodule

rewards "correct_guess" //name for the reward
b1=1 : 1; //when b1=1, give a reward of 1

endrewards

We now briefly introduce the PRISMmodelling language and explain how to model our Example
in PRISM. According to Kwiatkowska et al. (2009) a PRISM model comprises of the type of
probabilistic model and a set of modules which represent different components of the system
being modelled. As mentioned previously, PRISM can be used to describe several types of
probabilistic models by including their keywords: dtmc, ctmc, mdp, pta or pomdp which is
typically specified at the start of the file. If no model type is declared, then the model is by default
assumed to be an MDP. The state of each module is modelled a variable representing a set of
finite-randing values. The global state of the model at any point in time is determined by the
values of all such module variables and, optionally, a set of global variables. The behaviour of a
module, i.e. the changes to its state that can occur, is specified by a set of guarded commands.
These take the form:

[act] guard→ rate : update;

where act is an (optional) action label, guard is a predicate over the variables of the model,
rate is a positive real-valued expression and update is of the form:

(G ′1 = D1) & (G ′2 = D2) & . . . & (G ′
:
= D:)

where G1, G2, . . . , G: are local variables of the module and D1, D2, . . . , D: are expressions over all
variables. If the guard is true, a transition which the module can make is descibed by each update.
From Kwiatkowska et al. (2007), by giving the new values of the variables in the module, a
transition is specified and possibly as a function of other variables. In general, a PRISM language
description is the parallel composition of a probabilistic model modules. In every state of the
model, there is a set of commands whose guards are satisfied in that state. Each update is also
assigned a probability which will be assigned to the corresponding transition. Finally, to specify
additional quantitative measures of interest, we discuss the addition of rewards to a model. Reward
structures are associated with models using the rewards “A4F0A3=0<4”...4=3A4F0A3B construct
and are specified using multiple reward items of the form: 6D0A3 : A0C4;>A [02C]6D0A3 : A0C4;
depending on whether a state or transition rewards are being specified. A single reward item
depending on the values of model variables in each one, can assign different rewards to different
states or transitions and any states or transitions which do not satisfy the guard of a reward item

13

will have no reward assigned to them. The sum of the rewards is assigned for all the corresponding
reward items for the states and transitions which satisfy multiple guards.

Model 1 shows the PRISM modelling language version for Example 1, where first we specify that
our model is a DTMC by adding the keyword dtmc. A module bandit1 is now described having
a variable 11 which is assigned to values ranging from 0 to 1, describing its off and on state, and
the first command, for example, describes the probabilities of the bandit being either staying off
or transitioning its state to on. The bandit changes its state depending on the probabilities in
every round. A reward of one is also given using the reward structure whenever the bandit is on
(i.e 11 is equal to the value 1).

We now model our RMAB problem as a DTMC using PRISM as shown in Model 2 by extending
our Example 1. The model includes a set of bandits with varying transition probabilities, and a
scheduler which picks which bandit to choose. Synchronization is used such that both sets of
bandits change their states at the same time by labelling commands with actions that are placed
between the square brackets. As can be seen from the comments labelling the code, there are
two state of either bandit, which are simply an integer value (between 0 and 1) representing both
bandits in the off or on state. In every state B of the model, there is a set of commands (belonging
to any of the modules) which are enabled, i.e. whose guards are satisfied in that state. The state
of the scheduler B is an integer value (between 0 and =) where state 0 is when the bandit state
are changing and = being the number of bandits, which also corresponds where state number
: ∈ = is the bandit the system chooses, for example, B = 1 is when the system chooses bandit 1.
Turn is used to represent rounds for the system where the system will first change the states of
bandits then choose a bandit. Turn −1 to 0 is only used to initialise bandits where they have a
50% chance of either being "on" or "off". Turn 0 to 1 represents the synchronised movement of
every bandit changing their state at the same time, and turn 1 to 0 represents the system picking
a bandit. These two transitions form a round of the system and is repeated until our counter
reaches the value kmax. kmax is a constant which forms the module counter in which a global
variable : is an integer value ranging from 0 to kmax + 1. The counter provided is used for
our property specification '=? [� : = :<0G + 1] which is for computing the expected reward
cumulated along a path for = number of iterations. The choice between which command is
performed (i.e. the scheduling) depends on the model type and since our model is a DTMC, the
choice is probabilistic, with each enabled command selected with our choice of probability. The
probability matrices of 11 and 12 is as follows:

V1 =

(
0.7 0.3
0.6 0.4

)
& V2 =

(
0.5 0.5
0.35 0.65

)
The behaviour of our model is as follows. Starting in the initial state B0, the scheduler performs
8=8C80; action which is used to initialize our bandits to a random state initially so they have 50%
of being either 0 or 1 (turn -1 to 0). The scheduler now performs action 01 (turn 0 to 1) which
changes the states of all the bandits simultaneously. After that, 2ℎ>>B4 (turn 1 to 0) is performed
where as the model being a DTMC, the scheduler picks one bandit randomly, i.e the probability
of choosing either bandit is 0.5, hence the model does not learn or predict anything based on
current/previous states. The rewards module here associate a state reward of 1 to the state in
which the system picks either bandit 1 or bandit 2 when they are in the "on" (value 1) state by
using the two reward structures. Afterwards, the scheduler repeats the process from rotating the
bandits to picking them, and so forth.

14

Model 2 RMAB Problem in DTMC

1:
dtmc //model type

const double p1 = 0.3; //bandit 1 going from 0 to 1
const double p2 = 0.4; //bandit 1 going from 1 to 0
const double p3 = 0.5; //bandit 2 going from 0 to 1
const double p4 = 0.35; //bandit 2 going from 1 to 0

module bandit1
b1: [0..1]; // bandit is either off or on
[initial] true -> 0.5 : (b1'=0) + 0.5 : (b1'=1); //initially 50-50

chance of b1=0 or b1=1.

[a1] b1=0 -> p1:(b1'=1) + (1-p1):(b1'=0); //defining probs at
which b1=0 can stay or transition to b1=1

[a1] b1=1 -> p2:(b1'=0) + (1-p2):(b1'=1);

endmodule

module bandit2 //same as above with different probabilities

b2 : [0..1];
[initial] true -> 0.5 : (b2'=0) + 0.5 : (b2'=1);

[a1] b2=0 -> p3:(b2'=1) + (1-p3):(b2'=0);
[a1] b2=1 -> p4:(b2'=0) + (1-p4):(b2'=1);

endmodule

module scheduler
s : [0..2]; // 0 to n where n is the number of bandits.
//s=0 is no bandit chosen
turn : [-1..1]; //specifying if scheduler is picking or rotating

the bandits
[initial] turn=-1 -> (turn'=0); //turn = -1 is used to just

initialise the bandits randomly

[a1] turn=0 -> (turn'=1); //this turns all the bandits
[choose] turn=1 -> 0.5:(s'=1)&(turn'=0) + 0.5:(s'=2)&(turn'=0);

//picks bandit randomly

endmodule

//running the property for kmax iterations
const int kmax; //used in counter

module counter

k : [0..kmax+1];
[a1] k<kmax -> true; //turn bandits until kmax is reached
[choose] k<kmax -> (k'=min(kmax,k+1)); //choose bandits until kmax

is reached
[] k=kmax -> (k'=k+1); //make the last iteration

endmodule

rewards "correct_guess"
turn=0 & s=1 & b1=1 : 1; //give a reward of 1 when bandit 1 is

picked when it is on
turn=0 & s=2 & b2=1 : 1;

endrewards

15

4.2 Markov Decision Process
We can now extend our DTMC of the RMAB as an Markov decision processes (MDPs) to allow
the scheduler to choose which arm to play as opposed to the random choices and where the
state of every bandit is fully observable. We work with MDPs, a widely widely used model for
systems which exhibit both non-determinism, due for example to concurrency, and probability,
representing for example randomisation or unpredictability. An MDP is an extension of DTMC
where instead of making a probabilistic choice, MDPs make a nondeterministic choice between
several discrete probability distributions over successor states. From Norman et al. (2017), let
�8BC (-) denote the set of discrete probability distributions over a set - and ℝ used earlier.

Definition 2 MDP An MDP is a tuple " = ((; B̄;�; % ;') where:
• (is a set of states;
• B̄ ∈ (is an initial state;
• � is a set of actions;
• % : (×�→ �8BC (() is a (partial) probabilistic transition function;
• ' = ('(;'�) is a reward structure where '(: (→ ℝ is a state reward function and '� : (×�→ ℝ

an action reward function.
This represents an MDP " which can model a system exhibiting both probabilistic and non-
deterministic behaviour through states from the set (. Each state B of " has a set of available
actions represented by the set of �(B) → {0 ∈ � | % (B, 0) is defined} where each available
action/transition is chosen non deterministically.

A path of an MDP " represents a particular resolution of both non-determinism and probability.
Formally from Kwiatkowska et al. (2006), a path of an MDP is a non-empty finite or infinite
sequence of probabilistic transitions:

c = B0
00−→ B1

01−→ B2
00−→ . . .

where B8 ∈ (, 08 ∈ �(B8) such that % (B8 , 08) > 0 for all 8 ∈ ℕ. We denote c (8) the (8 + 1)Cℎ state of c
and the final state of c as ;0BC (c), if c is finite. We also define �%0CℎB" and �%0CℎB" and infinite
and finite paths of M starting in the initial state B̄.

MDPs are also annotated with rewards, which can be used to model a variety of quantitative
measures of interest, in particular we have a reward of '(which is accumulated when passing
through state B and a reward of '� when taking action 0 from state B.

In contrast to a path, an adversary or a strategy (also known as a scheduler or policy) represents a
particular resolution of non determinism only. More precisely, an adversary is a function mapping
every finite path c of" to a distribution f ∈ �(;0BC (c)), is a way of resolving the choice of action
in each state, based on the MDP’s execution so far.

Definition 3 (Norman et al. 2017) An adversary f of an MDP " = ((; B̄;�; % ;') is a function
f : �%0CℎB" → �8BC (�) such that, for any c ∈ �%0CℎB" , we have f (c) (0) > 0 only if 0 ∈ �(;0BC (c)).
Furthermore, let �3E denote the set of all adversaries.
A memoryless strategy is one where its choices are dependant only on the current state and has
a finite memory if it suffices to switch between a finite set of models. A strategy is also called
deterministic if it always selects an action with probability 1. The behaviour under a given
adversary f is purely probabilistic and we can define a probabilistic measure %A>1f (") over the
set of paths %0Cℎf ("). We now extend the Expected Reachability of DTMC to form the basis of
our MDP rewards.

Expected Reachability For an adversary f ∈ �3E , let

Ef" (�)
345
=

∫
c ∈%0Cℎf (")

A (�, c)3%A>1f"

16

Definition 4 For an MDP " = ((; B̄;�; % ;'), the optimal maximum expected rewards of reaching a
set of target states � ⊂ (from the state B ∈ (are defined as follows:

Emax
" (�)

345
= sup

f ∈�3E
Ef" (�).

According to Kwiatkowska et al. (2006) computing values for expected reachability reduces to
the stochastic shortest path problem for MDPs. A key result in this respect is that optimality
with respect to expected reachability can always be achieved with deterministic and memoryless
adversaries. This allows the use of efficient computational techniques such as policy iteration,
which builds a sequence of strategies until an optimal one is reached, and value iteration, which
computes increasingly precise approximations to the optimal probability or expected value. In
PRISM, we compute this by using:

• Rmax=? [F k=kmax+1] - maximum expected accumulated reward/cost gained in :
iterations;

Figure 4.2: A bandit state transition with actions

Example 2. From Figure 4.2, we extend our Example DTMC by turning probabilistic choices
into non-deterministic by after one step, process has a non-deterministic choice between: (on)
changing its state from 10 to 11 or remaining at 11 if its already at 11. Another non-deterministic
choice between: (off) changing its state from 11 to 10 or remaining at 10 if its already at 10.

This can be modeled in PRISM as shown in Model 3.

In Model 4, we extend our RMAB problem from DTMC to an MDP to allow the scheduler
make non-deterministic choices to the bandit it selects in each round. The behaviour of an MDP
is as follows. Starting in the initial state B = 0, the scheduler selects an action non-determinstically
to choose either bandit 1 or 2 based on the current states of the bandits and a reward of 1 is
obtained if the chosen bandit is on. The turn is used the same way as the DTMC model to switch
between changing the states of the bandits to choosing the bandits. Afterwards, the scheduler
repeats the process from B = 0, and so forth.

17

Model 3 Example MDP

1:
mdp //model type

module bandit1
b1: [0..1];

[off] b1=0 -> (b1'=0); //non-deterministic choice
[on] b1=0 -> (b1'=1);

[off] b1=1 -> (b1'=0);
[on] b1=1 -> (b1'=1);

endmodule

Model 4 RMAB Problem in MDP

1:
mdp

module bandit1
...

endmodule

module scheduler

s : [0..2];
turn : [-1..1];
[initial] turn=-1 -> (turn'=0);

[a1] turn=0 -> (turn'=1);
[choose1] turn=1 -> (s'=1)&(turn'=0); //non-deterministic choice
[choose2] turn=1 -> (s'=2)&(turn'=0);

endmodule

const int kmax; // bound on the steps

module counter
...

endmodule
...

18

4.3 Partially Observable Markov Decision Process
A limitation in our MDP model is that the scheduler can see the states of all the bandits which
does not model the RMAB problem accurately, therefore we consider POMDPs which extend
MDPs by restricting the extent to which only the current state of the bandit we pick can be
observed, in particular by strategies that control them. In this project, we adopt the following
notion of observability. Norman et al. (2017)

Definition 5 A POMDP is a tuple " = ((; B̄;�; % ;';O;>1B) where:
• ((; B̄;�; % ;') is an MDP;
• O is a finite set of observations;
• >1B : (→ O is a labelling of states with observations;

such that, for any states B; B ′ ∈ (with >1B (B) = >1B (B ′), their available actions must be identical, i.e.,
�(B) = �(B ′).
The current states of a POMDP cannot be directly determined, only the corresponding observa-
tion >1B (B) ∈ O. The requirement on available actions in the above definition follows from the
fact that, if states have different actions available, then they are not observationally equivalent as
the available actions are not hidden, and hence should not have the same observation. The notions
of paths, strategies and probability measures given above for MDPs transfer directly to POMDPs.
However, the set �3E of all strategies for a POMDP " only includes observation-based strategies
defined below.

Definition 6 Observation-based strategy A strategy of a POMDP " = ((; B̄;�; % ;';O;>1B) is a
function f : �%0CℎB" → �8BC (�) such that:

• is a strategy of the MDP ((; B̄;�; % ;');
• for any paths c = B0

00−→ B1
01−→ B2

02−→ . . . B= satisfying >1B (B8) = >1B (B ′8) and 08 = 0′0 for all 8 , we

have f (c) = f (c ′), where c ′ = B ′0
0′0−→ . . . B ′= .

Let �3E denote the set of all (observation-based) strategies of " .
We now introduce rewards for POMDP by extending definition 4 for expected reachability to
use observables denoted by Ef

"
(� $).

Definition 7 For a POMDP " = ((; B̄, �, %, ',O, >1B), the optimal maximum expected rewards of
reaching a target O (i.e., a set of states for an MDP and a set of observations for a POMDP) from the
state B ∈ (is defined as follows:

Emax
" (� $)

345
= sup

f ∈�3E
Ef" (� $).

We know that in MDPs we can achieve optimal values (see Definition 3), but in the case of
POMDPs, this no longer holds. In fact, determining the optimal probabilities and expected
rewards defined above is undecidable, making exact solution intractable. Instead, the optimal
value can be approximated, for example via analysis of the belief MDP and POMDP.

Beliefs. Given a POMDP" , a belief MDP B(") is an equivalent MDP, whose (continuous) state
space comprises beliefs, which are probability distributions over the state space of " . Intuitively,
although we may not know which of several observationally-equivalent states we are currently
in, we can determine the likelihood of being in each one, based on the probabilistic behaviour of
" . See Definition 5 given by Norman et al. (2017) for a more detailed explanation. The optimal
values for the expected reward to reach a target in the belief MDP equal those for the POMDP,
which is formally stated by the following proposition.

19

Proposition 1. If " = ((, B̄, �, %, ',O, >1B) is a POMDP where $ ∈ O a set of observations, then:

�<0G" (� $) = �<0GB(") (�)$)

where)$ = {1 ∈ �8BC (() |∀B ∈ (}
Using Model 5, we will now extend our MDP to limit the perfect knowledge of the system,
which is achieved by transforming it to a POMDP such as there is a realistic model where our
system can only observe the current state of the bandit it picks. This is done is PRISM through the
keyword observables and where the unspecified variables are considered hidden. The observable
values E1 and E2 are used to observe the current state of bandit 1 and 2 respectively when it is
played. We also extend our scheduler to observe only the current value of the bandit it picks
using these variables, hiding states of the other unpicked bandits, which is used in our belief
probabilities. Our system now can only see the current states of the observables variables we
mention that is the current state of our scheduler B, the CDA= our scheduler is on and : which is
the iteration we are on. In addition to that, by assigning the observable variable E1 and E2 to the
state of each bandit, the system only know the current state of the bandit it picks and cannot see
the rest.

As we are using an extension to PRISM for our POMDP that uses bounds, to analyse we use
an MDP-based abstraction. This provides a lower bound on the minimum probability or an
upper bound on the maximum which forms outer bounds on reachability probabilities. From
Jamieson and Nowak (2014), we know that despite the undecidability of the POMDP problems,
useful results can be obtained, often with precise bounds. We also refine our expected cumulative
reachability property by increasing grid resolution. Although, just incrementing the resolution
is not guaranteed to yield tighter bounds and in fact can yield worse bounds.

Our model operates by maintaining a belief state, 1 (B), which is a discrete probability distribution
over the states in which the environment might exist where 10 is the initial belief state. After
each action is taken and a new observation is made, the belief state is updated. To choose an
action, the model refers to an adversary which is a mapping from belief state to action. The
optimal adversary is one which will maximise the rewards obtained.

20

Model 5 RMAB Problem in POMDP

1:
pomdp

observables
//v1 and v2 are when the scheduler picks bandit1 or 2 it can observe

them.
s, turn, k, v1, v2

endobservables

module bandit1
...

module scheduler

s : [0..2];
turn : [-1..1];
v1 : [0..1];
v2 : [0..1];

[initial] turn=-1 -> (turn'=0);
[a1] turn=0 -> (turn'=1);
//v1 and gets the value of bandit 1 and 2 respectively
//so the scheduler can look at the current state
//of the bandit it picks
[choose1] turn=1 -> (s'=1)&(turn'=0)&(v1'=b1);
[choose2] turn=1 -> (s'=2)&(turn'=0)&(v2'=b2);

endmodule

...

4.4 Chapter Summary
In this chapter, we looked at the three models and how they differentiate from each other where
a DTMC has no control over the selection and exhibits probabilistic choices whereas an MDP
exhibits both non deterministic choices and probabilistic choices but the limitation is that an
MDP assumes perfect knowledge of the system which does not model our RMAB problem,
therefore, an extension to MDP, another model called POMDP was introduced to hide the states
of the non-played arms. We also discussed PRISM more broadly and how each of the models
were developed in the tool and the property we use to analyse.

The next chapter will give the analysis of the optimal strategies formed by the POMDP model.

21

5 Analysis

This chapter first discusses the additional tools developed which are used to evaluate the system.
The main purpose of this chapter is to analyse the three models (DTMC, MDP and POMDP)
developed in Section 3 using the tools.

5.1 Tools Developed
There were two types of tools developed for the purpose of this project:

1. Model Creation

(a) To automate the model building part of the project, several Python scripts were
developed which can be used to create the PRISM model files for our POMDP model
in different ways, including manual input of the probability distribution of the bandits
or to create models from reading a file which can have different number of bandits
and probability distributions.

(b) As the purpose of this project was also extended to comparing the cumulative reward
acquired by each model (DTMC, MDP and POMDP), another script for the sole
purpose of creating the three models with the given probability distribution of the
bandits was developed using Python.

2. Graph Generation

(a) As the extension of PRISM we use to analyse our POMDP model does not currently
support the generation of the adversary graphs, but can output the states, transitions
and belief probabilities into a simple text file. A snippet of the file is provided in Figure
5.1 which is not understandable to a normal reader. The output generated is in the
format:

current state number:(values of visible variables),[belief probabilities for values of
hidden variables] & non-deterministic number/probability @ (new values of visible
variables) > state number they transition to:(new values of visible variables),[new belief
probabilities for values of hidden variables]

To make this more readable, we transformed the file into a graph which was developed
by using a Python script to read in the file and along with pygraphviz (Hagberg et al.
2004) we created our strategy graphs which will be used to analyse optimal strategies.

(b) Another Python script with the help of matplotlib (Hunter 2007) was developed to
create the comparison graph provided the results of the three models which PRISM
can output into a text file. The reward comparison graph consists the rewards obtained
from 0 through some :<0G iterations by all the three models (DTMC, MDP and
POMDP) to compare the results.

22

Figure 5.1: PRISM generated adversary file

5.2 The Strategies
We now run our model against our specified property in PRISM to get bound results and the
strategies. The PRISM results we look at are given in Figures 5.2 and 5.3, which first shows the
variables in the models, where the variables in the round brackets are hidden and the rest are
observables. The second figure shows the Grid Statistics which are used in our bounds, where
we want to have the bounds as similar as possible so the optimal value can be approximated. It
also shows the result of the property i.e the cummulated reward obtained which is used in our
reward comparison graph.

Figure 5.2: PRISM snippet of the model being used

Figure 5.3: PRISM snippet of the results we evaluate

23

Using Figure 5.4 and 5.5, we will try to explain a adversary graph which is easy to read for
POMDP and the result comparison graph for each model first so we can try to analyse optimal
strategies for other probability distributions which generates are a bit more complex. We also
define the chance of success of each bandit as them being at value 1 or are turned “on". The
probability distribution of the bandits are as follows:

V1 =

(
0.5 0.5
0.5 0.5

)
& V2 =

(
0.1 0.9
0.1 0.9

)
A state represents a change in the scheduler state at every time step where the value of B represents
the current state of the scheduler. The variable CDA= will change its value from 0 to 1 and back
representing turning states of the bandit and picking a bandit respectively except for state number
0 as in that state we initialise our bandits with a random chance of being “on" or “off". The
variables E1, E2... will represent the current state of the bandit picked and the system will run for
: iterations. To explain the components to the belief probabilities, we take an example belief
probability from state number 2, which are [0.05, 0.45, 0.05, 0.45]. The Table 5.1 shows that
when the values of both bandits is 0 then the belief probability is 0.05. As we can see from the

The bandits 11 & 12 11 & 12 11 & 12 11 & 12
States of the bandits 0 & 0 0 & 1 1 & 0 1 & 1
Belief probabilities 0.05 0.45 0.05 0.45
Table 5.1: Table to show how belief probabilities relate to bandits

graph (Figure 5.5), the optimal strategy is to always pick bandit 2 (the one with 90% chance of
being at value 1) every turn to maximise the reward. The graph here only shows for : = 3, but
the strategy is optimal for any : . This is because at every state we have a 90% chance of bandit 2
having the value 1, and there is no need to explore. We can also see the belief probability at CDA=
1 is 0.45 for both components where bandit 2 is at value 1 compared to 0.05 chance for bandit
1 having value 1, even when bandit 2 does not gain a reward. Now considering the optimal
expected reachability, we obtain the following results as the grid resolution (GR) for :<0G = 10
which is refined during the analysis:

• GR = 2 yields 953 grid points and the bounds [9.0, 9.499]
• GR = 3 yields 1737 grid points and the bounds [9.0, 8.999]
• GR = 4 yields 2871 grid points and the bounds [9.0, 8.999]

Finally, we obtained a precise bound of ([9.0, 9.0]) with grid resolution = 5 for which the number
of points in the grid were 4425 with 4377 unknown points.

24

We now compare the rewards obtained from POMDP with the other models to compare and
evaluate the optimal strategy using Figure 5.4 shown below. The reward comparison graph
clearly shows that the random probabilistic choice for the DTMC, we obtain less than what
we can gather from POMDP which is very close to what we could have gathered from perfect
knowledge of states (MDP). This is expected as the MDP always chooses the bandit which is
“on" and since bandit 2 has such a high success chance, even the random choices of DTMC can
yield a high reward but our POMDP performs better than that by learning about and exploiting
the system.

Figure 5.4: Max Rewards of each model (2 bandits | 90% success) with respect to k iterations

25

State number: 0
s=0, turn=-1, v1=0, v2=0, k=0,

[1.0, 0.0, 0.0, 0.0]

State number: 1
s=0, turn=0, v1=0, v2=0, k=0,

[0.25, 0.25, 0.25, 0.25]

0/1.0

State number: 2
s=0, turn=1, v1=0, v2=0, k=0,

[0.05, 0.45, 0.05, 0.45]

0/1.0

State number: 3
s=2, turn=0, v1=0, v2=0, k=1,

[0.5, 0.0, 0.5, 0.0]

1/0.1

State number: 4
s=2, turn=0, v1=0, v2=1, k=1,

[0.0, 0.5, 0.0, 0.5]

1/0.9

State number: 5
s=2, turn=1, v1=0, v2=0, k=1,

[0.05, 0.45, 0.05, 0.45]

0/1.0

State number: 6
s=2, turn=1, v1=0, v2=1, k=1,

[0.05, 0.45, 0.05, 0.45]

0/1.0

State number: 7
s=2, turn=0, v1=0, v2=0, k=2,

[0.5, 0.0, 0.5, 0.0]

1/0.1

State number: 8
s=2, turn=0, v1=0, v2=1, k=2,

[0.0, 0.5, 0.0, 0.5]

1/0.9 1/0.1 1/0.9

State number: 9
s=2, turn=1, v1=0, v2=0, k=2,

[0.05, 0.45, 0.05, 0.45]

0/1.0

State number: 10
s=2, turn=1, v1=0, v2=1, k=2,

[0.05, 0.45, 0.05, 0.45]

0/1.0

State number: 11
s=2, turn=0, v1=0, v2=0, k=3,

[0.5, 0.0, 0.5, 0.0]

1/0.1

State number: 12
s=2, turn=0, v1=0, v2=1, k=3,

[0.0, 0.5, 0.0, 0.5]

1/0.9 1/0.1 1/0.9

State number: 13
s=2, turn=0, v1=0, v2=0, k=4,

[0.5, 0.0, 0.5, 0.0]

0/1.0

State number: 14
s=2, turn=0, v1=0, v2=1, k=4,

[0.0, 0.5, 0.0, 0.5]

0/1.0

Figure 5.5: POMDP of 2 bandit with one having 90% success rate

26

5.2.1 Two-armed Bandits

We now start to look at probability distributions which do not have that high of a success chance
so we have to consider exploring the system, by first analysing two bandits which have very
similar chance of success using Figure 5.3 given below.

The probability matrix distribution for bandits in Figure 5.3 is as follows:

V1 =

(
0.5 0.5
0.5 0.5

)
& V2 =

(
0.4 0.6
0.6 0.4

)
Figure 5.8 shows the optimal strategies for :<0G = 3, and our analysis for :<0G = 5 follows. The
optimal strategy given is to first pick bandit 2 as it has a higher 60% chance of success. If a reward
is given, then we should switch to bandit 1 which now has a 50% probability of success as oppose
to 40%. Now, the optimal strategy is to switch back to bandit 2 regardless of bandit 1’s reward as
there is a 52% chance of success with a very slight difference of 2% between having the value of
1 for bandit 1 and bandit 2 (higher). If there is no reward from bandit 2 in the first place then
we should still keep picking bandit 2. This tells us that it is always better to explore for bandit 1
and also when a reward is received by bandit 2. It is also better to exploit the bandit 2 when no
reward is obtained as it still has a higher probability of success.

we obtain the following results as the grid resolution (GR) for :<0G = 10 which is refined during
the analysis:

• GR = 3 yields 1737 grid points and the bounds [5.331, 5.833]
• GR = 5 yields 4425 grid points and the bounds [5.331, 5.499]
• GR = 15 yields 58465 grid points and the bounds [5.331, 5.354]

Finally, we obtained a precise bound of ([5.331, 5.331]) with grid resolution = 20 for which the
number of points in the grid were 125735 with 125567 unknown points.

These states keep repeating, and therefore we now create a simple figure based on the different
states achieved shown in Figure 5.6. We also present our reward comparison graph of the three
models which is shown in Figure 5.7. This is as expected for the same reasons as before although
our POMDP is closer to the DTMC and this might be because of the exploration-exploitation
trade-off where some rewards were potentially sacrificed in order to learn.

27

Figure 5.6: Representation of the optimal strategy

Figure 5.7: Max Rewards of each model (2 bandits | 60% success) with respect to k iterations

28

St
at

e
nu

m
be

r:
0

s=
0,

 t
ur

n=
-1

, v
1=

0,
 v

2=
0,

 k
=0

,
[1

.0
, 0

.0
, 0

.0
, 0

.0
]

St
at

e
nu

m
be

r:
1

s=
0,

 t
ur

n=
0,

 v
1=

0,
 v

2=
0,

 k
=0

,
[0

.2
5,

 0
.2

5,
 0

.2
5,

 0
.2

5]

0/
1.

0

St
at

e
nu

m
be

r:
2

s=
0,

 t
ur

n=
1,

 v
1=

0,
 v

2=
0,

 k
=0

,
[0

.2
5,

 0
.2

5,
 0

.2
5,

 0
.2

5]

0/
1.

0

St
at

e
nu

m
be

r:
3

s=
2,

 t
ur

n=
0,

 v
1=

0,
 v

2=
0,

 k
=1

,
[0

.5
, 0

.0
, 0

.5
, 0

.0
]

1/
0.

5

St
at

e
nu

m
be

r:
4

s=
2,

 t
ur

n=
0,

 v
1=

0,
 v

2=
1,

 k
=1

,
[0

.0
, 0

.5
, 0

.0
, 0

.5
]

1/
0.

5

St
at

e
nu

m
be

r:
5

s=
2,

 t
ur

n=
1,

 v
1=

0,
 v

2=
0,

 k
=1

,
[0

.2
, 0

.3
, 0

.2
, 0

.3
]

0/
1.

0

St
at

e
nu

m
be

r:
6

s=
2,

 t
ur

n=
1,

 v
1=

0,
 v

2=
1,

 k
=1

,
[0

.3
, 0

.2
, 0

.3
, 0

.2
]

0/
1.

0

St
at

e
nu

m
be

r:
7

s=
2,

 t
ur

n=
0,

 v
1=

0,
 v

2=
0,

 k
=2

,
[0

.5
, 0

.0
, 0

.5
, 0

.0
]

1/
0.

4

St
at

e
nu

m
be

r:
8

s=
2,

 t
ur

n=
0,

 v
1=

0,
 v

2=
1,

 k
=2

,
[0

.0
, 0

.5
, 0

.0
, 0

.5
]

1/
0.

6

St
at

e
nu

m
be

r:
9

s=
1,

 t
ur

n=
0,

 v
1=

0,
 v

2=
1,

 k
=2

,
[0

.6
, 0

.4
, 0

.0
, 0

.0
]

0/
0.

5

St
at

e
nu

m
be

r:
10

s=
1,

 t
ur

n=
0,

 v
1=

1,
 v

2=
1,

 k
=2

,
[0

.0
, 0

.0
, 0

.6
, 0

.4
]

0/
0.

5

St
at

e
nu

m
be

r:
11

s=
2,

 t
ur

n=
1,

 v
1=

0,
 v

2=
0,

 k
=2

,
[0

.2
, 0

.3
, 0

.2
, 0

.3
]

0/
1.

0

St
at

e
nu

m
be

r:
12

s=
2,

 t
ur

n=
1,

 v
1=

0,
 v

2=
1,

 k
=2

,
[0

.3
, 0

.2
, 0

.3
, 0

.2
]

0/
1.

0

St
at

e
nu

m
be

r:
13

s=
1,

 t
ur

n=
1,

 v
1=

0,
 v

2=
1,

 k
=2

,
[0

.2
4,

 0
.2

6,
 0

.2
4,

 0
.2

6]

0/
1.

0

St
at

e
nu

m
be

r:
14

s=
1,

 t
ur

n=
1,

 v
1=

1,
 v

2=
1,

 k
=2

,
[0

.2
4,

 0
.2

6,
 0

.2
4,

 0
.2

6]

0/
1.

0

St
at

e
nu

m
be

r:
15

s=
2,

 t
ur

n=
0,

 v
1=

0,
 v

2=
0,

 k
=3

,
[0

.5
, 0

.0
, 0

.5
, 0

.0
]

1/
0.

4

St
at

e
nu

m
be

r:
16

s=
2,

 t
ur

n=
0,

 v
1=

0,
 v

2=
1,

 k
=3

,
[0

.0
, 0

.5
, 0

.0
, 0

.5
]

1/
0.

6

St
at

e
nu

m
be

r:
17

s=
1,

 t
ur

n=
0,

 v
1=

0,
 v

2=
1,

 k
=3

,
[0

.6
, 0

.4
, 0

.0
, 0

.0
]

0/
0.

5

St
at

e
nu

m
be

r:
18

s=
1,

 t
ur

n=
0,

 v
1=

1,
 v

2=
1,

 k
=3

,
[0

.0
, 0

.0
, 0

.6
, 0

.4
]

0/
0.

5
1/

0.
48

1/
0.

52

St
at

e
nu

m
be

r:
19

s=
2,

 t
ur

n=
0,

 v
1=

1,
 v

2=
1,

 k
=3

,
[0

.0
, 0

.5
, 0

.0
, 0

.5
]

1/
0.

52

St
at

e
nu

m
be

r:
20

s=
2,

 t
ur

n=
0,

 v
1=

1,
 v

2=
0,

 k
=3

,
[0

.5
, 0

.0
, 0

.5
, 0

.0
]

1/
0.

48

St
at

e
nu

m
be

r:
21

s=
2,

 t
ur

n=
0,

 v
1=

0,
 v

2=
0,

 k
=4

,
[0

.5
, 0

.0
, 0

.5
, 0

.0
]

0/
1.

0

St
at

e
nu

m
be

r:
22

s=
2,

 t
ur

n=
0,

 v
1=

0,
 v

2=
1,

 k
=4

,
[0

.0
, 0

.5
, 0

.0
, 0

.5
]

0/
1.

0

St
at

e
nu

m
be

r:
23

s=
1,

 t
ur

n=
0,

 v
1=

0,
 v

2=
1,

 k
=4

,
[0

.6
, 0

.4
, 0

.0
, 0

.0
]

0/
1.

0

St
at

e
nu

m
be

r:
24

s=
1,

 t
ur

n=
0,

 v
1=

1,
 v

2=
1,

 k
=4

,
[0

.0
, 0

.0
, 0

.6
, 0

.4
]

0/
1.

0

St
at

e
nu

m
be

r:
25

s=
2,

 t
ur

n=
0,

 v
1=

1,
 v

2=
1,

 k
=4

,
[0

.0
, 0

.5
, 0

.0
, 0

.5
]

0/
1.

0

St
at

e
nu

m
be

r:
26

s=
2,

 t
ur

n=
0,

 v
1=

1,
 v

2=
0,

 k
=4

,
[0

.5
, 0

.0
, 0

.5
, 0

.0
]

0/
1.

0

Figure 5.8: POMDP of 2 bandits with one having 60% success rate (graph is rotated to fit)

29

We now look at another two-armed bandit with different probability distributions as follows:

V1 =

(
0.6 0.4
0.4 0.6

)
& V2 =

(
0.3 0.7
0.6 0.4

)
Figure ?? shows the optimal strategy for the above probability distributions. The strategy given
is to choose bandit 2 which has a 55% chance of success and then choose bandit 1 if a reward
was obtained as there is a higher chance than the 30% success rate bandit 2 provides. Now, if
bandit 1 gives a reward then we should keep on choosing it as there is a 60% chance of success
until there is no reward obtained, from which we should choose bandit 2 with a 52.6% chance
of success. The reasoning behind is to keep on exploring so that scheduler can learn and improve
the success for future. Now, if there was no reward obtained by bandit 2 in the first place then
we should keep on choosing as there is still a 70% chance of success until a reward is obtained,
from which we should switch to bandit 1. The reasoning is to exploit the higher bandit as it has
a higher chance and then explore as the success chance drops.

we obtain the following results as the grid resolution (GR) for :<0G = 10 which is refined during
the analysis:

• GR = 3 yields 1737 grid points and the bounds [5.749, 6.181]
• GR = 5 yields 4425 grid points and the bounds [5.749, 5.892]
• GR = 15 yields 58465 grid points and the bounds [5.755, 5.789]

Finally, we obtained a precise bound of ([5.7555, 5.758]) with grid resolution = 35 for which the
number of points in the grid were 593545 with 593257 unknown points.

In figure 5.9 we show the strategy in a simple format and also present our reward comparison
graph of the three models which is shown in Figure 5.10.

30

Figure 5.9: Representation of the optimal strategy

Figure 5.10: Max Rewards of each model (2 bandits) with respect to k iterations

31

[Graph removed]

32

5.2.2 Three-armed Bandits

We now extend our RMAB problem by having three bandits and analyse their optimal strategies.
The probability distribution for the three bandits we look at is:

V1 =

(
0.5 0.5
0.5 0.5

)
& V2 =

(
0.6 0.4
0.4 0.6

)
& V3 =

(
0.3 0.7
0.6 0.4

)
The strategy given is to choose bandit 3 with a 55% chance of success, after which if a reward is
given then switch to bandit 2 with 50% chance of success. Now, if bandit 2 gives an immediate
reward then we should switch back to bandit 3 with a 58% success chance repeating the whole
process. The reason behind is that we are exploiting the higher success chance bandits because
of immediate rewards. However, if no reward is obtained at that time then we should pick
bandit 3 and keep choosing it if there is no reward, although now, if there is a reward obtained
we should pick bandit 1 which has a 50% chance of success. This exploration is to allow the
scheduler learn for future chances of success. Due to the complexity of the graph in both time
and understand-ability, the strategy after bandit 1 is not observed. On the other hand, if bandit
3 does not gain a reward in the first place then we should still keep on choosing until a reward
is obtained and switch to bandit 2. The reasoning is to exploit the best bandit we have until a
reward is obtained from it.

we obtain the following results as the grid resolution (GR) for :<0G = 5 which is refined during
the analysis:

• GR = 3 yields 11281 grid points and the bounds [2.873, 3.266]
• GR = 5 yields 65329 grid points and the bounds [2.872, 3.042]
• GR = 8 yields 495991 grid points and the bounds [2.871, 2.918]

Finally, we obtained a close bound (as GR > 13 is becoming computationally heavy) of ([2.874,
2.911]) with grid resolution = 13 for which the number of points in the grid were 5803681 with
5790241 unknown points.

In figure 5.11 we show the strategy in a simple format and also present our reward comparison
graph of the three models which is shown in Figure 5.12.

Note: The adversary graphs are not shown anymore due to not fitting them in a page and are
provided as part of submission.

33

Figure 5.11: Representation of the optimal strategy

Figure 5.12: Max Rewards of each model (3 bandits) with respect to k iterations

34

We now look at another three-armed bandit with different probability distributions as follows:

V1 =

(
0.55 0.45
0.45 0.55

)
& V2 =

(
0.6 0.4
0.4 0.6

)
& V3 =

(
0.3 0.7
0.6 0.4

)
The strategy given is to choose bandit 3 with a 55% chance of success and if there is a reward
obtained then we should choose bandit 2 with a 50% chance of success. If bandit 2 now gains a
reward then bandit 3 should be picked. After that, we should stay on bandit 3 until a reward
has been gained, after which we should switch to bandit 2 again and repeat the process. The
reason is to exploit the higher chance of success bandits to get rewards. However, if there was no
reward at bandit 2 then we switch to bandit 3 again and remain there until a reward has been
gained but should switch to bandit 1 with a 50% chance of success. Next, we should switch back
to bandit 3 regardless of the reward from bandit 1. This exploration is done to have the scheduler
learn for future chances of success. Now, if there was no reward obtained from bandit 3 at the
start then we should keep choosing bandit 3 until a reward is obtained from where this whole
process is repeated. The reason behind this exploitation is that bandit 3 is our highest chance of
success bandit and should be exploited until a reward is gained.

• GR = 3 yields 11281 grid points and the bounds [2.873, 3.266]
• GR = 5 yields 65329 grid points and the bounds [2.870, 3.056]
• GR = 8 yields 495991 grid points and the bounds [2.873, 2.918]

Finally, we obtained a close bound (as GR > 13 is becoming computationally heavy) of ([2.871,
2.916]) with grid resolution = 13 for which the number of points in the grid were 5803681 with
5790241 unknown points.

In figure 5.13 we show the strategy in a simple format and also present our reward comparison
graph of the three models which is shown in Figure 5.14.

35

Figure 5.13: Representation of the optimal strategy

Figure 5.14: Max Rewards of each model (3 bandits) with respect to k iterations

36

5.2.3 Four-armed Bandits

We now extend our RMAB problem by having four bandits and analyse their optimal strategies.
The probability distribution for the four bandits we look at is:

V1 =

(
0.5 0.5
0.5 0.5

)
& V2 =

(
0.6 0.4
0.4 0.6

)
& V3 =

(
0.3 0.7
0.6 0.4

)
& V4 =

(
0.55 0.45
0.45 0.55

)
The problem faced in analysing the optimal strategies is due to high computational cost, the
model was not able to build due to time and memory constraints and we could only gather results
for :<0G = 2 and the comparison is shown in Figure 5.15 and a snippet of the PRISM output is
shown in Figure 5.16.

Figure 5.15: Max Rewards of each model (4 bandits) with respect to k iterations

37

Figure 5.16: Max Rewards of each model (4 bandits) with respect to k iterations

5.3 Chapter Summary
In this chapter, we shed some light on the tools that were developed to automate model creation
and also to develop the strategy and reward comparison graphs to analyse the models. We
also then analysed the behaviour of some probability distributions with two-armed bandits and
three-armed bandits and also discussed why were those the optimal strategies and the expectation
from the reward comparison graphs. We also looked at the four-armed bandit which could not
be analysed due to them being so computationally heavy. The next chapter will conclude the
project and give some ideas for future work.

38

6 Conclusion

6.1 Summary of the project
This dissertation’s primary goal was to model and analyse the optimal strategies for the Restless
Multi-armed Bandit problem. We first looked at the problem itself and its application in the real
world and how probabilistic model checking tools such as PRISM can help model and analyse the
RMAB problem. We then defined the three probabilistic models: DTMC, MDP and POMDP;
and how they can be constructed in PRISM. We also defined temporal logics that formed our
reward measure and the technique used to analyse was belief space approximation.

We then discussed the tools developed for this project to automate model creation in PRISM
and also construct strategy graphs from the results given by it. Experiments involving other
PRISM models for POMDP were used as the inspiration for the analysis and the experiments.
Several probability distributions with different number of armed-bandits were then developed
as PRISM models with the help of the automated tools that were implemented. The PRISM
results were then evaluated and developed into adversary graphs for the analysis of POMDP
strategies and reward comparison graphs which helped to compare the three models. We also
then analysed those optimal strategies and gave the reasoning behind them and showed how the
exploration-exploitation trade-off problem affected rewards. I believe that model checking tools
such as PRISM are useful to model and analyse real world problems such as the RMAB problem.

6.2 Future Work
Since this work deals with a development version of PRISM, there leaves plenty of opportunity for
running these experiments again in the future with other more efficient approximation techniques
and zone based implementations. We can also then extend our experiments to model real world
probability distributions and would be int resting to see how the given optimal strategies by
PRISM differentiates from the real world experiments we can run.

39

A Obtaining and Running PRISM Extension

The PRISM extension used for this project can be found on: https://github.com/prismmodelchecker/prism-
ext/tree/pomdps

This can be built in exactly the same way as normal versions of PRISM. See the installation on:
http://www.prismmodelchecker.org/manual/InstallingPRISM/Instructions.

This can be done using the following:

git clone https://github.com/prismmodelchecker/prism-ext.git
cd prism-ext/prism
git checkout pomdps
make

Now the format for running PRISM is: prism #model file# #property file# -prop #property
number#

We also add some other switches, namely:

-const, -gridresolution, -javamaxmem, -exportadv and -exportresults

An example:

prism 2bandit50.prism bandits.prop -prop 1 -const kmax=10
-gridresolution 10 -exportadv 2bandit50.adv -exportresults
2bandit50.res

This will generate two files (2bandit50.adv and 2bandit50.res) which are the strategy with states
and the other is the reward achieved for kmax = 10. These will be used in the tools mentioned
below to generate the adversary graph and the reward comparison graph.

Note: -javamaxmem switch is used for bandits which require more computational power and
higher values of kmax.

40

B Project Directory Structure

root
Adversary Graphs

Contains the adversary graphs analysed in this project
Basic Models

Contains the basic models for dtmc, mdp and pomdp as references
Models analysed

Contains all the models developed for this project
Reward Graphs

Contains all the reward comparison graphs for this project
Tools

Contains all the tools developed for this project
The model names correspond to the order they appear in:

1. 2bandit90
2. 2bandit50
3. 2banditRandom
4. 3bandit50
5. 3banditRandom
6. 4bandit

41

C Using the Tools

As mentioned there are four tools developed.

1. Make the prism model files given the probability distribution. This can be achieved in
two ways, either use generateModelsFromInput.py to manually input the model and the
probability distributions or use generateModelsFromText.py with a text file like the example
modelText provided.
> python generateModelsFromInput.py
> python generateModelsFromText.py modelText.txt

2. Make the three models given one probability distribution. This is achieved using the file
generateDuplicateModels.py by simply running it and inputting the probability distribu-
tions

3. Make the adversary graphs. This is achieved by running createGraph.py against an adver-
sary file generated above, for example:
> python createGraph.py 2bandit50.adv

4. Make the reward comparison graph. This is achieved by running createRewardGraph.py
against the three result files as such:
> python createRewardGraph.py 2bandit50dtmc.res 2bandit50mdp.res
2bandit50pomdp.res
Here the files need to be in order of DTMC, MDP then POMDP.

42

6 Bibliography

W. Akin, Ezra. A multi-armed bandit approach to following a Markov chain, 2017. URL
https://calhoun.nps.edu/handle/10945/55572.

P. Blasco and D. Gündüz. Multi-access communications with energy harvesting: A multi-armed
bandit model and the optimality of the myopic policy. IEEE Journal on Selected Areas in
Communications, 33, 03 2015. doi: 10.1109/JSAC.2015.2391852.

E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using
branching time temporal logic. In D. Kozen, editor, Logics of Programs, pages 52–71, Berlin,
Heidelberg, 1982. Springer Berlin Heidelberg. ISBN 978-3-540-39047-3.

E. M. Clarke, Jr., O. Grumberg, and D. A. Peled. Model Checking. MIT Press, Cambridge, MA,
USA, 1999. ISBN 0-262-03270-8.

W. Dai, Y. Gai, B. Krishnamachari, and Q. Zhao. The non-bayesian restless multi-armed bandit:
A case of near-logarithmic strict regret. pages 2940–2943, 09 2011. doi: 10.1109/ICASSP.
2011.5946273.

V. Forejt, M. Kwiatkowska, and D. Parker. Pareto curves for probabilistic model checking.
In S. Chakraborty and M. Mukund, editors, Proc. 10th International Symposium on Automated
Technology for Verification and Analysis (ATVA’12), volume 7561 of LNCS, pages 317–332.
Springer, 2012.

J. Gittins, K. Glazebrook, and R. Weber. Multi-Armed Bandit Allocation Indices, 2nd Edition.
Wiley, 02 2011. doi: 10.1002/9780470980033.ch8.

A. Hagberg, D. Schult, and M. Renieris. Pygraphviz, 2004. URL http://pygraphviz.
github.io.

J. D. Hunter. Matplotlib: A 2d graphics environment. Computing In Science & Engineering, 9(3):
90–95, 2007. doi: 10.1109/MCSE.2007.55.

K. Jamieson and R. Nowak. Best-arm identification algorithms for multi-armed bandits in the
fixed confidence setting. In 2014 48th Annual Conference on Information Sciences and Systems
(CISS), pages 1–6, March 2014. doi: 10.1109/CISS.2014.6814096.

J. Kuhn and Y. Nazarathy. Wireless Channel Selection with Restless Bandits, pages 463–485. 03
2017. ISBN 978-3-319-47764-0. doi: 10.1007/978-3-319-47766-4_18.

M. Kwiatkowska. Model checking for probability and time: From theory to practice. In Proc.
18th Annual IEEE Symposium on Logic in Computer Science (LICS’03), pages 351–360. IEEE
Computer Society Press, 2003. Invited Paper.

M. Kwiatkowska, G. Norman, and D. Parker. Game-based abstraction for Markov decision
processes. In Proc. 3rd International Conference on Quantitative Evaluation of Systems (QEST’06),
pages 157–166. IEEE CS Press, 2006.

https://calhoun.nps.edu/handle/10945/55572
http://pygraphviz.github.io
http://pygraphviz.github.io

43

M. Kwiatkowska, G. Norman, and D. Parker. Stochastic model checking. In M. Bernardo
and J. Hillston, editors, Formal Methods for the Design of Computer, Communication and Software
Systems: Performance Evaluation (SFM’07), volume 4486 of LNCS (Tutorial Volume), pages
220–270. Springer, 2007.

M. Kwiatkowska, G. Norman, and D. Parker. Prism: Probabilistic model checking for per-
formance and reliability analysis. ACM SIGMETRICS Performance Evaluation Review, 36(4):
40–45, 2009.

M. Kwiatkowska, G. Norman, and D. Parker. Advances and challenges of probabilistic model
checking. In Proc. 48th Annual Allerton Conference on Communication, Control and Computing,
pages 1691–1698. IEEE Press, 2010.

M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of probabilistic real-time
systems. In G. Gopalakrishnan and S. Qadeer, editors, Proc. 23rd International Conference on
Computer Aided Verification (CAV’11), volume 6806 of LNCS, pages 585–591. Springer, 2011.

J. Le Ny, M. Dahleh, and E. Feron. Multi-uav dynamic routing with partial observations using
restless bandit allocation indices. In 2008 American Control Conference, pages 4220–4225, June
2008. doi: 10.1109/ACC.2008.4587156.

H. Liu, K. Liu, and Q. Zhao. Learning in a changing world: Restless multiarmed bandit with
unknown dynamics. IEEE Transactions on Information Theory, 59(3):1902–1916, March 2013.
ISSN 0018-9448. doi: 10.1109/TIT.2012.2230215.

A. Mahajan and D. Teneketzis. Multi-Armed Bandit Problems, pages 121–151. Springer US,
Boston, MA, 2008. ISBN 978-0-387-49819-5. doi: 10.1007/978-0-387-49819-5_6. URL
https://doi.org/10.1007/978-0-387-49819-5_6.

G. Norman, D. Parker, and X. Zou. Verification and control of partially observable probabilistic
systems. Real-Time Systems, 53(3):354–402, 2017.

H. Oldenkamp. Probabilistic model checking : a comparison of tools. 2007.

C. H. Papadimitriou and J. N. Tsitsiklis. The complexity of optimal queueing network control.
In Proceedings of IEEE 9th Annual Conference on Structure in Complexity Theory, pages 318–322,
June 1994. doi: 10.1109/SCT.1994.315792.

K. Sigman. Discrete-time Markov chains: Stochastic processes in discrete time. 2008.

P. Whittle. Restless bandits: Activity allocation in a changing world. Journal of Applied Probability,
25:287–298, 1988. ISSN 00219002. URL http://www.jstor.org/stable/3214163.

https://doi.org/10.1007/978-0-387-49819-5_6
http://www.jstor.org/stable/3214163

	Introduction
	The Problem
	Motivation
	Aims
	Outline

	Background
	Multi-armed Bandit
	Restless Multi-armed Bandit
	Applications
	Chapter Summary

	Probabilistic Model Checking
	Model Checking
	Probabilistic Model Checking
	PRISM
	Chapter Summary

	Probabilistic models
	Discrete Time Markov Chains
	Markov Decision Process
	Partially Observable Markov Decision Process
	Chapter Summary

	Analysis
	Tools Developed
	The Strategies
	Two-armed Bandits
	Three-armed Bandits
	Four-armed Bandits

	Chapter Summary

	Conclusion
	Summary of the project
	Future Work

	Appendices
	Obtaining and Running PRISM Extension
	Project Directory Structure
	Using the Tools
	Bibliography

