Introduction to Electrical Engineering 2 Assignment Solution 1

Igor Shevtsov

September 5, 2014

1. Question 1 Solution

1.1 Section 1

Following equations describe current-voltage relations between some¹ circuit elements:

$$v_R = iR \tag{1.1}$$

$$i_C = C \dot{v}_C \tag{1.2}$$

$$v_L = L\dot{i}_L \tag{1.3}$$

Applying nodal method at the v_L node of circuit on Figure 1

$$I_0 = \frac{v_L}{R} + i_L \tag{1.4}$$

Using (1.3) one could obtain a differential equation

$$\dot{i}_{L}(t) + \frac{R}{L}\dot{i}_{L}(t) = \frac{R}{L}I_{0} , t > 0$$
 (1.5)

Figure 1: Electric Circuit

1.2 Section 2

Assuming circuit's steady state, yields constant² current, therefore

$$ZSR: \quad i_L = I_0 \tag{1.6}$$

Proof. Solving ZIR of the equation (1.5):

$$i_{L,ZIR}(t) = A \exp(\frac{-t}{\tau})$$

$$\lim_{t \to \infty} i_L(t) = \lim_{t \to \infty} \left(i_{L,ZIR} + i_{L,ZSR} \right) = i_{L,ZSR} = I_0$$
(1.7)

¹Resistor, Capacitor and Inductor

 $^{^{2}}$ Resistor Shortened by Inductor

1.3 Section 3

Summarizing equation (1.6) with (1.7) and activating given initial condition $i_L(t=0) = 2$ A results in final solution $i_L(t)$, where $\tau = \frac{L}{R}$:

Figure 2: Inductor Current with $I_0 = 1A$

2. Question 2 Solution

2.1 Section 1

Consider the circuit on Figure 3b. Now³ applying current divider technique one could easily calculate the following currents:

$$i_{1} = \frac{40}{500 + 2k||6k} \cdot \frac{2k}{500 + 2k||6k}$$
$$i_{2} = \frac{40}{500 + 2k||6k} \cdot \frac{6k}{500 + 2k||6k}$$
$$i_{1}(0^{-}) = 20 \text{ mA} \qquad i_{2}(0^{-}) = 60 \text{ mA}$$

 3 Inductor is Short

Figure 3: Question 2 Circuit

2.2 Section 2

Assuming continuity in the inductor current $i_1(0^-) = i_1(0^+) = 20$ mA on Figure 3c, where $i_1 = -i_2$, thus, setting $i_1(0^+) = -i_2(0^+) = 20$ mA we get the currents

 $i_1(0^+) = 20 \,\mathrm{mA}$ $i_2(0^+) = -20 \,\mathrm{mA}$

2.3 Section 3

It's obvious, that circuits 3b and 3c are equivalent to the one on Figure 1 (Page 1) with $\tau = 50$ ms and $I_0 = V_0/R_{eq} = 20$ mA:

$$\dot{i}_{L}(t) + \frac{R}{L}\dot{i}_{L}(t) = \frac{R}{L}I_{0} , t > 0$$
 (2.8)

2.4 Section 4

Adopting ZIR^4 solution (1.7)

$$i_1(t) = i_1(0^+) \exp\left(\frac{-t}{\tau}\right) \quad , t > 0$$
$$i_2(t) = -i_1(t)$$

 $^{^4 {\}rm Since},$ there is no source in the circuit

3. Question 3 Solution

3.1 Section 1

The voltage drop on the capacitor⁵ on Figure 4b as follows

$$v_C(0^-) = 15 \text{ mA} \cdot 2.4 \text{ k}\Omega = 36 \text{ V}$$
 (3.9)

Figure 4: Question 3 Circuit

3.2 Section 2

Replacing capacitor with a test voltage, as shown on Figure 4c, allows input resistance calculation $R_{in} = \frac{v_t}{i_t}$

$$v_t - v_\phi = 25k\alpha \cdot v_\phi$$

$$v_t = (1 + 25k\alpha) \cdot v_\phi = 15k(1 + 25k\alpha) \cdot i_t$$

$$R_{in}(C) = 15k(1 + 25k\alpha)$$
(3.10)

 $^{^5}$ Open-Circuited Capacitor

3.3 Section 3

Given circuit's time constant $\tau = R \cdot C = 25$ ms requires resistor R = 100 k Ω . Setting into (3.10) leads to the value of α -parameter

$$\alpha \approx 2.26 \cdot 10^{-4}$$

3.4 Section 4

As before⁶ using ZIR solution (1.7) adapted for voltages, where $\tau = 25$ ms and initial condition of the capacitor⁷ $v_C(0^-) = v_C(0^+) = 36$ V

{	$v_C(t) = v_C(0^+) \exp\left(\frac{-t}{\tau}\right)$	$,t \ge 0$
	$v_C(t) = v_C(0^-)$, t < 0

⁶Due to circuits analogy ⁷Continuity in voltage drop