Introduction to Electrical Engineering 2 Assignment Solution 1

Igor Shevtsov

September 5, 2014

1. Question 1 Solution

1.1 Section 1

Following equations describe current-voltage relations between some ${ }^{1}$ circuit elements:

$$
\begin{align*}
v_{R} & =i R \tag{1.1}\\
i_{C} & =C \dot{v}_{C} \tag{1.2}\\
v_{L} & =L \dot{i}_{L} \tag{1.3}
\end{align*}
$$

Applying nodal method at the v_{L} node of circuit on Figure 1

$$
\begin{equation*}
I_{0}=\frac{v_{L}}{R}+i_{L} \tag{1.4}
\end{equation*}
$$

Using (1.3) one could obtain a differential equation

$$
\begin{equation*}
\dot{i_{L}}(t)+\frac{R}{L} i_{L}(t)=\frac{R}{L} I_{0} \quad, t>0 \tag{1.5}
\end{equation*}
$$

Figure 1: Electric Circuit

1.2 Section 2

Assuming circuit's steady state, yields constant ${ }^{2}$ current, therefore

$$
\begin{equation*}
Z S R: \quad i_{L}=I_{0} \tag{1.6}
\end{equation*}
$$

Proof. Solving ZIR of the equation (1.5) :

$$
\begin{array}{r}
i_{L, Z I R}(t)=A \exp \left(\frac{-t}{\tau}\right) \tag{1.7}\\
\lim _{t \rightarrow \infty} i_{L}(t)=\lim _{t \rightarrow \infty}\left(i_{L, Z I R}+i_{L, Z S R}\right)=i_{L, Z S R}=I_{0}
\end{array}
$$

[^0]
1.3 Section 3

Summarizing equation (1.6) with (1.7) and activating given initial condition $i_{L}(t=0)=2 \mathrm{~A}$ results in final solution $i_{L}(t)$, where $\tau=\frac{L}{R}$:

$$
i_{L}(t)=I_{0}+\left(2-I_{0}\right) \exp \left(\frac{-t}{\tau}\right) \quad, t>0
$$

Figure 2: Inductor Current with $I_{0}=1 \mathrm{~A}$

2. Question 2 Solution

2.1 Section 1

Consider the circuit on Figure 3b. Now ${ }^{3}$ applying current divider technique one could easily calculate the following currents:

$$
\begin{aligned}
i_{1} & =\frac{40}{500+2 k \| 6 k} \cdot \frac{2 k}{500+2 k \| 6 k} \\
i_{2} & =\frac{40}{500+2 k \| 6 k} \cdot \frac{6 k}{500+2 k \| 6 k} \\
i_{1}\left(0^{-}\right) & =20 \mathrm{~mA} \quad i_{2}\left(0^{-}\right)=60 \mathrm{~mA}
\end{aligned}
$$

[^1]
(a) Superposed Circuit

(b) Past Time Circuit

(c) Future Time Circuit

Figure 3: Question 2 Circuit

2.2 Section 2

Assuming continuity in the inductor current $i_{1}\left(0^{-}\right)=i_{1}\left(0^{+}\right)=20 \mathrm{~mA}$ on Figure 3c, where $i_{1}=-i_{2}$, thus, setting $i_{1}\left(0^{+}\right)=-i_{2}\left(0^{+}\right)=20 \mathrm{~mA}$ we get the currents

$$
i_{1}\left(0^{+}\right)=20 \mathrm{~mA} \quad i_{2}\left(0^{+}\right)=-20 \mathrm{~mA}
$$

2.3 Section 3

It's obvious, that circuits 3 b and 3 c are equivalent to the one on Figure 1 (Page 1) with $\tau=50 \mathrm{~ms}$ and $I_{0}=V_{0} / R_{e q}=20 \mathrm{~mA}$:

$$
\begin{equation*}
\ddot{i_{L}}(t)+\frac{R}{L} i_{L}(t)=\frac{R}{L} I_{0} \quad, t>0 \tag{2.8}
\end{equation*}
$$

2.4 Section 4

Adopting ZIR 4 solution (1.7)

$$
\begin{aligned}
& i_{1}(t)=i_{1}\left(0^{+}\right) \exp \left(\frac{-t}{\tau}\right) \quad, t>0 \\
& i_{2}(t)=-i_{1}(t)
\end{aligned}
$$

[^2]
3. Question 3 Solution

3.1 Section 1

The voltage drop on the capacitor ${ }^{5}$ on Figure 4 b as follows

$$
\begin{equation*}
v_{C}\left(0^{-}\right)=15 \mathrm{~mA} \cdot 2.4 \mathrm{k} \Omega=36 \mathrm{~V} \tag{3.9}
\end{equation*}
$$

(a) Superposed Circuit

(b) Past Time Circuit

(c) Future Time Circuit

Figure 4: Question 3 Circuit

3.2 Section 2

Replacing capacitor with a test voltage, as shown on Figure 4c, allows input resistance calculation $R_{\text {in }}=\frac{v_{t}}{i_{t}}$

$$
\begin{align*}
v_{t}-v_{\phi} & =25 k \alpha \cdot v_{\phi} \\
v_{t}=(1+25 k \alpha) \cdot v_{\phi} & =15 k(1+25 k \alpha) \cdot i_{t} \\
R_{i n}(C) & =15 k(1+25 k \alpha) \tag{3.10}
\end{align*}
$$

[^3]
3.3 Section 3

Given circuit's time constant $\tau=R \cdot C=25 \mathrm{~ms}$ requires resistor $R=100 \mathrm{k} \Omega$. Setting into (3.10) leads to the value of α-parameter

$$
\alpha \approx 2.26 \cdot 10^{-4}
$$

3.4 Section 4

As before ${ }^{6}$ using ZIR solution (1.7) adapted for voltages, where $\tau=25 \mathrm{~ms}$ and initial condition of the capacitor ${ }^{7} v_{C}\left(0^{-}\right)=v_{C}\left(0^{+}\right)=36 \mathrm{~V}$

$$
\begin{cases}v_{C}(t)=v_{C}\left(0^{+}\right) \exp \left(\frac{-t}{\tau}\right) & , t \geqslant 0 \\ v_{C}(t)=v_{C}\left(0^{-}\right) & , t<0\end{cases}
$$

[^4]
[^0]: ${ }^{1}$ Resistor, Capacitor and Inductor
 ${ }^{2}$ Resistor Shortened by Inductor

[^1]: ${ }^{3}$ Inductor is Short

[^2]: ${ }^{4}$ Since, there is no source in the circuit

[^3]: ${ }^{5}$ Open-Circuited Capacitor

[^4]: ${ }^{6}$ Due to circuits analogy
 ${ }^{7}$ Continuity in voltage drop

