# The domain of a composite function 

Aidan Horn

March 3, 2015

I have tried to find a systematic way of finding the domain of a composite function for a few months now. Today, I tried explaining this concept to a firstyear maths student, and found myself horribly confused all over again. After some research in the library, I have finally found a definition of that can be used for this purpose (the internet mostly directs one to worked-through examples and no generalized definition, so I had to resort to the library):

$$
D(f \circ g)=\{x \mid x \in D(g) \wedge g(x) \in D(f)\}
$$

(Vaught, 1995:18)
Where $D(\lambda)=$ the domain of $\lambda$

## Example 1

Solve

$$
D(\ln (\ln (\ln x)))
$$

(This was in a MAM1000W past paper)
Solution:
Let $\ln (\ln (\ln x))=f(g(h(x)))$

$$
D(g \circ h)=\{x \mid x \in(0, \infty) \wedge \ln x \in(0, \infty)\}
$$

Now, $\ln x \in(0, \infty) \Leftrightarrow x \in(1, \infty)$

$$
\begin{aligned}
\therefore & x \in(1, \infty) \\
& D(f \circ(g \circ h))=\{x \mid x \in(1, \infty) \wedge \ln (\ln x) \in(0, \infty)\}
\end{aligned}
$$

Now, $\ln (\ln x) \in(0, \infty) \Leftrightarrow \ln x \in(1, \infty) \Leftrightarrow x \in(e, \infty)$
$\therefore x \in(e, \infty)$

## Example 2.1

Consider $f(x)=x+1$ and $g(x)=x^{2}$ where $D(g)=[-2,2]$.
Find $D(f \circ g)$

```
\(f \circ g(x)=x^{2}+1\)
\(D(f \circ g)=\left\{x \mid x \in[-2,2] \wedge x^{2} \in \mathbb{R}\right\}\)
    \(x^{2} \in \mathbb{R} \Leftrightarrow x \in \mathbb{R}\)
    \(\therefore x \in[-2,2]\)
```


## Example 2.2

Consider the same example as Example 2.1, but with $D(f)=[-2,1]$

$$
\begin{aligned}
& D(f \circ g)=\left\{x \mid x \in[-2,2] \wedge x^{2} \in[-2,1]\right\} \\
& \quad x^{2} \in[-2,1] \Leftrightarrow x^{2} \in[0,1] \Leftrightarrow x \in[-1,1] \\
& \quad \therefore x \in[-1,1]
\end{aligned}
$$

## References

Vaught, RL. 1995. Set theory: An introduction. 2nd edition. Boston: Birkhäuser.

