STARCRAFT: BROOD WAR

LITERATURE PRESENTATION

Tessa Klunder, Kwok He Chu, Dewi Zweije, Martijn Visser and Mathijs Lardinoije

01/06/2016

Universiteit Utrecht

- 1. StarCraft: Brood War
- 2. Related work
- 3. Implementation
- 4. Benchmarks
- 5. Summary

STARCRAFT: BROOD WAR

StarCraft: Brood War (1998) Blizzard Entertainment Real-time strategy game

- Resource management
 - Minerals
 - Vespene gas
- Building construction
- Warfare

- Four difficulty levels
 "easy" to "insane"
- \bigcirc Noted problems
 - Unresponsive
 - Exploitable bugs

Student StarCraft AI Tournament (SSCAIT)¹

AIIDE Starcraft AI Competition²

¹http://sscaitournament.com/

²https://webdocs.cs.ualberta.ca/ cdavid/starcraftaicomp/

RELATED WORK

Tactical Decision-Making	Strategic Decision-Making
	and Plan Recognition
Reinforcement Learning	Case-Based Planning
Game-Tree Search	HIERARCHICAL PLANNING
Bayesian models	Behaviour Trees
Case-Based Reasoning	Goal-Driven Autonomy
Neural Networks	State Space Planning
	Spatial Reasoning
	Deductive Reasoning
	Probabilistic Reasoning

⁰Robertson, Glen, and Ian D. Watson. "A Review of Real-Time Strategy Game AI." AI Magazine 35.4 (2014): 75-104.

Reinforcement learning and neural network

⁰Shantia, Amirhosein, Eric Begue, and Marco Wiering. "Connectionist reinforcement learning for intelligent unit micro management in starcraft." Neural Networks (IJCNN), The 2011 International Joint Conference on. IEEE.

Case-based planning

⁰Ontañón, Santiago, et al. "Case-based planning and execution for real-time strategy games." Case-Based Reasoning Research and Development. Springer Berlin Heidelberg, 2007. 164-178.

- High complexity
- Only works for small armies
- Unavailability of a suitable simulator

⁰Uriarte, Alberto, and Santiago Ontañón. "High-level representations for game-tree search in RTS games." Tenth Artificial Intelligence and Interactive Digital Entertainment Conference. 2014.

O Main Goal

• Challenging and fun experience for every type of player that can also compete against other bots.

○ Sub Goals

- Multiple difficulty levels
- AI can adapt during the game
- Agent based

IMPLEMENTATION

- Goal-driven Autonomy
- Hierarchical Planning
- Spatial Reasoning
- Heat maps

Information

- Obtain list of unit actions: Attack, Move, Build.
- Obtain current data of visible unit: Position, HP, Mana, isIdle.
- Obtain global data about any unit type: MaxSpeed, Damage, MaxHP, Size, isFlyer.
- Unit micro-management
- Resource allocation

⁰http://code.google.com/p/bwapi/

Attack Sequence	isAttacking	isAttackFrame	Additional Notes
1. Unit is Idle	False	False	Unit may be idle or performing another command (i.e.: move)
2. Issue Attack Cmd	False	False	Player gives order to attack a target unit
3. Turn to Face Target	False	False	May have 0 duration if already facing target
Approach Target	False	False	May have 0 duration if already in range of target
5. Stop Moving	False	False	Some units require unit to come to complete stop before firing
6. Begin Attack Anim	True	True	Attack animation starts, damage not yet dealt
7. Anim Until Damage	True	True	Animation frames until projectile released
8. Mandatory Anim	True	True	Extra animation frames after damage (may be 0)
9. Optional Anim	True	True	Other command can be issued to cancel extraneous frames
10. Wait for Reload	True	False	Unit may be given other commands until it can shoot again
11. Goto Step 3	False	False	Repeat the attack

Table 1: The attack sequence of a unit.

⁰Churchill, David, and Michael Buro. "Incorporating search algorithms into RTS game agents." AI and Interactive Digital Entertainment Conference, AIIDE (AAAI). 2012.

- \bigcirc Identifying when goals need to be updated
- Creating units
 - Economy
 - Military
- Performing actions
 - Gathering resources
 - Attacking
 - Defending
- Early game vs. Mid game

⁰Weber, Ben George, Michael Mateas, and Arnav Jhala. "Applying Goal-Driven Autonomy to StarCraft." AIIDE. 2010.

Commander: Bobbot

- Military Control
 - Unit move orders, squads & micro management
- Worker Control
 - Resource gathering
- Building Control
 - Build order & build requests
- Scouting
 - Map exploration (spatial reasoning)

⁰Weber, Ben George, Michael Mateas, and Arnav Jhala. "Building Human-Level AI for Real-Time Strategy Games." AAAI Fall Symposium: Advances in Cognitive Systems. Vol. 11. 2011.

- Reasoning about positions and actions
- Terrain analysis
 - Connection between the regions
 - Choke points
 - Predict locations of the enemy
 - Influence maps (for combat and threat levels)

⁰Weber, Ben George, Michael Mateas, and Arnav Jhala. "A Particle Model for State Estimation in Real-Time Strategy Games." AIIDE. 2011.

This figure shows how different regions are connected along with possible choke points. **Technique:** Potential Fields -Kabanza et al. (2010) uses this for threat identification & Enemy location prediction (Influence Maps).

⁰http://www.razerzone.com/de-de/synapse/stats

BENCHMARKS

- \bigcirc Win / Lose Ratio
- Units lost vs. Units killed
- Resource Manager
- O Survival Time

- O Main Criteria
- 100 Bot runs against

- \bigcirc Units lost
 - Military
 - Economy
- Units killed
 - Military
 - Economy

- Total resources gathered
- Resource savings vs. resource spending

○ Survival time

SUMMARY

- Starcraft
- Related Work
- Goals
- Implementation using BWAPI
 - Goal-driven Autonomy
 - Hierarchical Planning
 - Spatial Reasoning
- Benchmarks