Smallest Area of a Triangle Formed from the Tangent Line of a Parabola

Roop Pal

November 16, 2015

Introduction

This problem is an applied optimization problem. The problem is to minimize the area of the triangle formed by a tangent line to the function $y=1-\frac{1}{9} x^{2}$. The triangle is defined by the origin, the x-intercept of the tangent line, and the y-intercept of the tangent line. Only triangles formed in the first quadrant are of concern.

Variables

The original parabola is represented by the function f. The relevant variables are the area, represented by A; the x-intercept, represented by i, and the y -intercept, represented by j. The x -coordinate of the tangency point is represented by t, so the y-coordinate of the tangency point is represented by $f(t)=1-\frac{1}{9} t^{2}$. The slope of the tangent line, then, is represented by $f^{\prime}(t)=-\frac{2}{9} t$. The x-intercept of f is evaluated below.

$$
\begin{gathered}
0=1-\frac{1}{9} x^{2} \\
x^{2}=9 \\
x= \pm 3
\end{gathered}
$$

$x=3$ as we are focused on the first quadrant.
A diagram is drawn below.

Made with MS Paint

Objective Function and Range

First, we must find the objective function $A(t)$ and range constraining t.

Objective Function

The objective function is $A(t)$, or the area of the triangle as dependent on t, the arbitrary x-coordinate on the function $f . A(t)=\frac{1}{2} \cdot i j$ by the formula for the area of a triangle. The tangent line in slope-intercept form is

$$
\begin{gathered}
y-f(t)=f^{\prime}(t)(x-t) \text { by the definition of a tangent line. } \\
y-\left(1-\frac{1}{9} t^{2}\right)=-\frac{2}{9} t(x-t) \text { by substitution. } \\
y-1+\frac{1}{9} t^{2}=-\frac{2}{9} t x+\frac{2}{9} t^{2} \\
y=-\frac{2}{9} t x+\frac{1}{9} t^{2}+1
\end{gathered}
$$

Now we must evaluate for the intercepts i and j.

$$
\begin{gathered}
0=-\frac{2}{9} t i+\frac{1}{9} t^{2}+1 \\
\frac{2}{9} t i=\frac{1}{9} t^{2}+1 \\
i=\frac{9}{2 t} \cdot \frac{t^{2}}{9}+\frac{9}{2 t} \\
i=\frac{t}{2}+\frac{9}{2 t} \\
j=-\frac{2}{9} t \cdot 0+\frac{1}{9} t^{2}+1 \\
j=\frac{1}{9} t^{2}+1
\end{gathered}
$$

Now that we have i and j in terms of t, we can use them to find the area function or objective function $A(t)$.
$A(t)=\frac{1}{2} \cdot i j$ by the definition of the area of a triangle.
$A(t)=\frac{1}{2} \cdot\left(\frac{t}{2}+\frac{9}{2 t}\right) \cdot\left(\frac{1}{9} t^{2}+1\right)$ by substitution.
$A(t)=\frac{t^{3}}{36}+\frac{t}{2}+\frac{9}{4 t}$ by expansion.

Range

The range of t is constrained to the first quadrant. It ranges from 0 to the x-intercept of f, which, as evaluated above, is 3 . Thus, $t \in[0,3]$.

Optimization

To optimize $A(t)$, we must first find $A^{\prime}(t)$.

$$
A^{\prime}(t)=\frac{t^{2}}{12}+\frac{1}{2}-\frac{9}{4 t^{2}} \text { by the Power Rule. }
$$

Then, we must set the function to 0 to find points of interest.

$$
\frac{t^{2}}{12}+\frac{1}{2}-\frac{9}{4 t^{2}}=0
$$

$t^{4}+6 t^{2}-27=0$ by multiplying by $12 t^{2}$.
$\left(t^{2}+9\right)\left(t^{2}-3\right)=0$
$t= \pm \sqrt{3}$ if we solve for t.
$t=\sqrt{3}$ since we are working in the first quadrant.

Now we must analyze this critical point and the endpoints. The points are $0, \sqrt{3}$, and 3 .

$$
\begin{gathered}
A(0)=\frac{9}{4 \cdot 0} \\
A(0)=\infty \\
A(\sqrt{3})=\frac{\sqrt{3}^{3}}{36}+\frac{\sqrt{3}}{2}+\frac{9}{4 \sqrt{3}} \\
A(\sqrt{3})=\frac{\sqrt{3}}{12}+\frac{6 \sqrt{3}}{12}+\frac{9 \sqrt{3}}{12} \\
A(\sqrt{3})=\frac{16 \sqrt{3}}{12} \\
A(\sqrt{3})=\frac{4 \sqrt{3}}{3} \\
A(3)=\frac{3^{3}}{36}+\frac{3}{2}+\frac{9}{4 \cdot 3} \\
A(3)=\frac{3}{4}+\frac{6}{4}+\frac{3}{4} \\
A(3)=\frac{12}{4} \\
A(3)=3
\end{gathered}
$$

As seen, $t=\sqrt{3}$ yields the smallest area of $\frac{4 \sqrt{3}}{3}$. Now we must calculate the intercepts i and j, the y-coordinate of the tangent point $f(t)$, and the equation of the tangent line in point slope form $y-f(t)=f^{\prime}(t) t(x-t)$.

$$
\begin{gathered}
i=\frac{t}{2}+\frac{9}{2 t} \\
i=\frac{\sqrt{3}}{2}+\frac{9}{2 \sqrt{3}} \\
i=\frac{\sqrt{3}}{2}+\frac{3 \sqrt{3}}{2} \\
i=\frac{4 \sqrt{3}}{2} \\
i=2 \sqrt{3} \\
j=\frac{1}{9} t^{2}+1 \\
j=\frac{1}{3}+1 \\
j=\frac{4}{3} \\
f(\sqrt{3})=1-\frac{1}{3} \\
f(\sqrt{3})=\frac{2}{3} \\
y-\frac{2}{3}=-\frac{2 \sqrt{3}}{9}(x-\sqrt{3})
\end{gathered}
$$

Conclusion

In conclusion, the triangle with the smallest area is the one with the following properties. The tangent point is $\left(\sqrt{3}, \frac{2}{3}\right)$. The equation of the tangent line is $y-\frac{2}{3}=-\frac{2 \sqrt{3}}{9}(x-\sqrt{3})$. The line's intercepts are $(2 \sqrt{3}, 0)$ and $\left(0, \frac{4}{3}\right)$. The area of the triangle is $\frac{4 \sqrt{3}}{3}$.

