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Let x; be the current position and d; and d;_; be the previous two iterations’
motions. Then combine into one state vector:
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When moving from s; to sj11, djr1 can be found by reflecting d;_; across
d;, while x;1 is just that step along from x;:
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Define ¢; as the factor for the d; term in the above equations:
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Then the update can be linearized across s:
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01 0 ¢ 0 -1
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FE=10 0 o0 ¢ 0 -1
00 1 0 0 0
00 0 1 0 0

To use this update matrix with an extended Kalman filter, we need the
Jacobian of F;. As the only non-linearity in F;, we only need to calculate the
partial derivatives of ¢;:
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The resulting Jacobian is then:
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The Kalman filter’s prediction step is then:

si+1 = [is;
Py = J;PJl



