
I have some concerns about proving that all of arithmetic can come from the Peano Axioms.
Perhaps it is possible to define the functions mentioned below in more clever ways that I am unaware
of, and my concerns are completely pointless. I also realize this could be construed as proving a
universal claim by example, but instead, think of it as proving one curiosity by example. I think
that is valid.

I would like to begin with the idea that an axiom is simply an allowed semantic idea, and a
semantic idea is something that can be expressed with symbols. I will use the English language
to express semantic ideas as best as I can, and mathematical notation to show how they can be
conveyed. An example of this is the ninth axiom:

9. For every natural number n, if n is in K, then S(n) is in K, and K contains every
natural number.

The semantics of this statement allow us to begin using the S(x) notation, or the +1 notation
meaningfully. Now, the first eight axioms set us up to use the = sign, eliminate all negative
numbers, allow the use of the number zero, and things like that. From these semantics, and these
semantics alone, we can write a formula:

y = S(x)

This simply adds one to the value x and assigns it to the variable y. These semantics can be
replicated with other symbols, and are not dependent on the notation system itself. However,
I believe that many of the steps involved in extrapolating out the Peano axioms to the extent
of arithmetic that it often is are merely features of our common notation system. Consider the
decrementing function:

S(x) = y

It is commonly accepted that this is a valid way to subtract one, but is it? It uses the left side
of the function, a construct we created outside of the axioms, in order to subtract one value. We
could replicate our prior simple successor function by writing S(x), or x + 1, or X plus one. We
cannot replicate this S(x) = y function in any way, using the semantics we were already given,
outside of our personal notation system. Similarly, pattern matching is a feature of our notation
system. Consider an example:

sign(x) =

{
0 0
S(x) 1

This idea of branching apart the input into multiple functions is an abuse of the notation system in
order to derive a mathematical operation that the axioms do not allow. The semantics involved in
this operation do not follow from the semantics given by the axioms, they follow from the symbols
that we assigned to the semantics being re-given new semantics and then extrapolated upon. The
thoughts that led me to these hypotheses are below.

Let’s imagine a partial function. One such function, over N, is the sign function. We define the
function as such:

sign(x) =

{
0 0
S(x) 1

It is rather obvious that this function relies on pattern matching for its power. Consider the
concept that you do not wish to write the pattern matching into your function, because maybe
some student believes it is far too powerful for primitive recursion. One way to rewrite the function
would be:

sign(x) =
x

x
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This takes advantage of the idea that undefined behavior can be used to our advantage. This
function is undefined when the number is zero, and defined when the number is one. From this,
we can define all sorts of functions that, instead of pattern matching, utilize intentional undefined
behavior to express themselves as one function without pattern matching. Consider subtraction,
which should be undefined when y is greater than x. We defined floored subtraction in class as the
following.

−(x, y) =

{
x, 0 x
S(x), y DECR(−(x, y))

Without pattern matching, expressed as:

−(x, y) =
DECR(−(x, y))

x
· x

Without decimal values, though, this approach will fail on the division. In order to avoid this
problem, we can first write a new function using our sign(x) function, gr(x) or ≥ (x).

ge(x) = sign(S(−(x, y)))

We may now consider a more succinct approach.

−(x, y) = DECR(−(x, y)) · sign(x) · sign(y)

But now ge(x) and −(x, y) are defined in terms of each other, and this function relies on the
notion that you must stop recursing when you hit an undefined value, and then treat that undefined
value as zero.

The above are merely thoughts I had while contemplating whether or not it would be possible
to eliminate pattern matching and remain able to construct the same functions.

• Pattern matching truly adds power. It cannot be replicated in non-pattern-matched functions
without changing the axioms to include treating undefined behavior as zero.

• Also, while unmentioned here, I believe altering the left side of the function with the successor
function is adding power.

From these hypotheses (which I have not gone through the effort to prove, although maybe I
should), it feels like using pattern matching and left-hand modification are simply abuses of our
notation system being used to add power to the Peano Axioms.
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