
NoSQL - A Silver Bullet?
Jonathan Law

Abstract

Fred Brooks Jr. outlined
four inherent problems in software
engineering in his paper No Silver
Bullet. Being written almost thirty
years ago new technologies have
been developed which have not been
evaluated against these properties.
This paper will be evaluating the
features of NoSQL databases and look
to see how they affect the problems,
whether positively or negatively.

Keywords: Changeability, Complexity,
Conformity, Invisibility, No Silver Bullet,
NoSQL

I Introduction

IN THE paper No Silver Bullet, Brooks Jr. (1986,
p.1) states that ”There is no single development,

in either technology or management technique, which
by itself promises even one order-of-magnitude
improvement within a decade in productivity, in
reliability, in simplicity”. He went on to assert that
the four intractable problems of software engineering
are:

• Complexity

• Conformity

• Changeability

• Invisibility

His paper was published in 1986, almost thirty
years ago. Since then new technologies and

methodologies have been conceived. In this paper,
NoSQL will be discussed, looking at the four
inherent problems outlined by Frederick P. Brooks
Jr. and if NoSQL has made any improvement on
the problems. In addition, we shall compare NoSQL
against RDBMS databases, as they saw prominence
prior to the popularity of NoSQL. NoSQL differ
from RDBMS as NoSQL is a non-relational database
which does not support ACID transactions as
opposed to RDBMS being relational and supporting
ACID transactions.
NoSQL can be considered a trend as opposed to
a technology but it is a trend which inspired
the development of different database technologies.
Databases which are considered to be part of the
NoSQL family include key-value, document, graph
and wide-column stores.

II Complexity

”Digital computers are themselves more complex
than most things people build.” (Brooks Jr., 1986,
p.3). Brooks Jr. identified complexity to be an
essential property of software, and that to abstract
away the complexity of software is to lose the essence
of the software itself.
NoSQL databases are based on simple tables
which host all data that have no correlation to
each other. To manipulate and retrieve data,
database administrators are given a primitive set of
commands. Complex business functionality requires
significant amount of design and programming to
implement, although simpler business models may
be able to suffice with the primitive command set
supplied (Lombardo, Di Nitto and Ardagna, 2012,
p.443).
Reduction of complexity in software projects may
be aided or hindered by use of NoSQL depending on
the functionality required from the database itself.
Should the majority of functions required from the
database be satisfied by the instruction set provided
by NoSQL, then complexity of the software should
be reduced as the schema is simpler compared to
that of a RDBMS. However, complex queries are
expcted to be executed often, then complexity may
increase within software, as it requires extra work
and programming to be implemented. Complex
query programming can be difficult (Leavitt, 2010,
p.13).
NoSQL offers features such as auto-sharding,
replication and integrated caching natively. While
this can be achieved with RDBMS, it is only capable
of doing so through external software or development
of systems to do so (MongoDB, 2013). This is an
area where NoSQL is capable of reducing complexity.
It seems that there is a trade-off about where the
complexity lays within the system, rather than how
much complexity there is. It is important to consider
what is functionality is required from the database
when choosing a database system, in order to reduce
the complexity which the developers will face.

III Conformity

”Much of the complexity he must master is arbitrary
complexity, forced without rhyme or reason by the
many human institutions and systems to which his
interfaces must conform.” (Brooks Jr., 1986, p.3).

1



Software systems must conform to many different
standards and formats; There are laws and standards
which specify multitudes of factors such as the
storage of data (Data Protection Act 1998), while
there are other systems and environments in place
which the software may require to interface to, such
as externalised APIs.
As databases are designed with the intent of storing
data, it is important for such technologies to conform
to the Data Protection Act (1998), which specifies a
multitude of factors to ensure data security. It has
been evaluated that NoSQL databases have common
problems in allowing the encryption of data files
as well as weak authentication between client and
servers (Okman, et al., 2011), which concerns data
security.
The arbitrary complexity that is enforced ”differ
from interface to interface, and from time to
time” (Brooks Jr., 1986, p.4). As discussed in
the Changeability section of this paper, NoSQL’s
enhanced ability to adapt to changes means that
it is more suitable to conforming to sets of
changing standards or requirements to interfaces
when compared to that of a RDBMS. Its speed in
executing these changes means there will be less
downtime and as a result, less negative affect on
the product. Against a static set of standards or
requirements to interfaces which do not look to
change often or regularly, such as that of laws or
acts, NoSQL’s changeability serves no advantages.
It may seem standards set by external organisations
only add complexity to the system. One could
assume that to do away with the standards would
be beneficial. This would reduce the problem of
conformity, and may have several benefits such
as reduced complexity and speed of development.
However, standards were primarily introduced for
a reason. They have benefits such as encouraging
process control, positive influence of the promotion
of process repeatability and stablisation of activities
(Tripp, L.L. and Voldner, P. 1995, p.108).
It would seem foolish to do away with standards
when they were introduced to mitigate other
problems. Perhaps the correct way to deal
with conformity is to evaluate the management of
standards and interfaces itself, instead of looking to
a technology to mitigate against introduced overhead
issues.

IV Changeability
”The software entity is constantly subject to
pressures for change.” (Brooks Jr., 1986, p.4).
Software is expected to change. Failed software

is either scrapped entirely, or changed to suit the
original requirements and functionality expected.
Successful software outlives the machine it is written
for, and is often adapted to its new host. Users
attempt to use the software outside the confines of
its original specified domain, and requires changes
to increase suitability. Changeability is an expected
behaviour of software.
NoSQL databases feature dynamic schemas which
allow insertion of data without having predefined a
schema for the database to adhere to. Key value
stores are especially so in this respect as they are
wholly schemaless. New values can be added at
runtime without affecting any other data stored or
the uptime of the system (Hecht and Jablonski,
2011). This complements agile methodologies in
software projects well. It allows focus on the design
and adapting to changes in the software, rather than
the schema which supports the data. Changes in
NoSQL schema have minimal friction (Sadalage and
Fowler, 2012).
Comparing to that of RDBMS which use schemas
which are defined before any operation can be
performed. Making any changes which require
a change in the schema, requires the schemas
to be modified first and for the database to be
migrated to the new schema. This may require
a migration project in order to complete schema
changes. Database schema migration can involve
writing change scripts which need to be written from
scratch for each change. This can be error-prone
with slow turn about times, while also requiring
that the database is unusable while the migration
is taking place. This can be mitigated by using
a copy of the database to host the service, while
another version is being updated (Sadalage and
Fowler, 2012). This fits in poorly with the ideals of
agile methodology, including the aim to meet rapidly
changing requirements (Livermore, 2007).
NoSQL’s dynamic schema supports frequency and
speed of change in a positive way. Changes in
databases can be done quickly, scaling well with
the size of the change to be made while having
the capability to avoid down-times with the service
and without the need of any scripts or migration
projects. The changes can be made simply and
effectively. This helps to reduce the effect of
problems encountered due to the required and
expected changeability in software.

V Invisibility
”Software is invisible and unvisualizable. The reality
of software is not inherently embedded in space.”

2



(Brooks Jr., 1986, p.4). Software is difficult
to visualise and as a result can be difficult to
document software design. This becomes more
difficult as software systems tend to integrate
difficult technologies and have a need to convey and
abstract different information to different people.
RDBMS make use of Entity Relationship Diagrams
(ERD) to diagrammatically represent its schema.
While the database is in operation, this schema
will always be correct and consistent throughout
the database. Data that does not conform to
the database’s schema will be rejected. ERDs
are capable of abstracting away unnecessary
information, such as data type, data length,
constraints, etc. ERDs were designed to be used
to represent different views of data from a single
perspective (Chen, 1976).
Visualisation of a NoSQL database’s model is made
difficult by the differences in its data model (within
the same database) as well as a lack of explicit
schemas and querying language (Näsholm, 2012).
While there may be an implicit schema throughout
the database, data entered or modified does not
necessarily conform to the implicit schema (Fowler,
2013). For example, an ’Age’ field may be an integer
for one user, but could be specified as a string of
text for another. While this is beneficial in terms
of changeability and flexibility within the system,
it brings about complications when attempting to
construct a visual representation of the database.
This means there can be no single representation of
the database that will be consistent throughout, even
while in operation (Fowler, 2013).
UML Class Diagrams have been proposed and used
as a way of constructing representations of NoSQL
schemas. Delfosse (2012) has suggested how to map
a graph store database to UML Class Diagrams,
while some users of Stack Overflow (2013) have
been seen using Class Diagrams for the purpose
of representation of NoSQL databases. However
this still does not tackle the problem of possible
inconsistency throughout the database.
It can be said that RDBMS is superior in this aspect.
The strict and rigid schema provides a useful way of
representing the data storage model. Opposing this
to NoSQL which is flexible and inconsistent, making
it difficult to meaningfully convey the model in a
diagrammatic format.

VI Conclusion and Future Work

It seems that while the four inherent problems of
software development are truly inherent, or at the
very least not wholly solved with the introduction of

NoSQL databases, it is important to note that the
effects of these problems can be rebalanced to other
areas.
While the dynamic nature of NoSQL promotes
changeability, it does so at the cost of its visibility.
Complexity has a balance shift, with complexity
moved towards the manipulation and representation
of the data, comparing to the complexity of RDBMS
and its schema and relationship between data.
Conformity also sees a similar shift. While NoSQL
does not natively supporting strong encryption and
security features, it does adapt to required changes
well.
When deciding which database technology to use,
one should consider the requirements of the system,
and the advantages and disadvantages of the
technology with the objective of reducing the effect
of the inherent problems outlined. It may be possible
to avoid the complexity introduced by NoSQL’s
limited instruction set if their model never requires
the execution of complex queries. In the same
manner, it may be more suitable to use RDBMS if
the system is expected to see little change during its
lifetime.
While it is difficult to say with complete certainty if
any technology or methodology will wholly mitigate
the four inherent problems of software development,
NoSQL as a technology by itself, does not serve to
be a ”silver bullet” which Brooks Jr. proposed and
does not appear capable of becoming one in the near
future, due to its schemaless nature.
In the future, perhaps there will be a new emergent
technology to drive databases to further become a
silver bullet. Perhaps a redesign of databases will be
required, meeting both the advantages provided by
NoSQL and RDBMS databases.

VII Acknowledgments
J.L Author would like to express gratitude to Dr
Simon Scola for having led lectures as well as
organising and participating in a review session of
the quality assurance process alongside Ing Alex
Fedorec. This gratitude also extends to other
students who were present and gave feedback during
the review session.
Thanks is also extended to those who agreed and
participated in peer reviewing and proof reading this
paper.

VIII References
Brooks Jr., F.P., 1986, No Silver Bullet -
Essence and Accident in Software Engineering

3



[pdf] University of North Carolina at Chapel
Hill. Available at: <http://faculty.salisbury.

edu/~xswang/Research/Papers/SERelated/no-

silver-bullet.pdf> [Accessed 29 October 2013].

Lombardo S., Di Nitto E. and Ardagna D.,
2012, Issues in Handling Complex Data Structures
with NoSQL databases [e-journal] DEI Politecnico
di Milano.Available through: IEEE Xplore
Digital Library at: <http://ieeexplore.ieee.

org/stamp/stamp.jsp?tp=&arnumber=6481064>

[Accessed 29 October 2013]

Leavitt N., 2010. Will NoSQL Databases Live Up
To Their Promises? Computer, [e-journal] 43(2).
Available through: IEEE Xplore Digital Library
at: <http://ieeexplore.ieee.org/stamp/stamp.

jsp?tp=&arnumber=5410700>[Accessed 29 October
2013]

MongoDB, 2013. NoSQL Databases Explained.
[online] Available at: <http://www.mongodb.com/

learn/nosql> [Accessed 05 November 2013]

Tripp, L.L. and Voldner, P., 1995. A market-driven
architecture for software engineering standards
[pdf] Seattle, WA. Available at: <http:

//ieeexplore.ieee.org/stamp/stamp.jsp?tp=

&arnumber=525956> [Accessed 07 November 2013]

Hecht, R. and Jablonski, S., 2011. NoSQL
Evaluation - A Use Case Oriented Survey [e-journal]
University of Bayreuth, Germany. Available
through: IEEE Xplore Digital Library at: <http:

//ieeexplore.ieee.org/stamp/stamp.jsp?tp=

&arnumber=6138544> [Accessed 07 November 2013]

Data Protection Act 1998. (c.2). London: HMSO.

Okman, L., Gal-Oz, N., Gonen, Y., Gudes,
E. and Abramov, J., 2011. Security Issues in
NoSQL Databases [e-journal] Available through:
IEEE Xplore Digital Library at: <http:

//ieeexplore.ieee.org/stamp/stamp.jsp?tp=

&arnumber=6120863> [Accessed 12 November 2013]

Sadalage, P. J. and Fowler M., 2010. NoSQL
Distilled A Brief Guide to the Emerging World of
Polyglot Persistence. Indiana: Pearson Education,
Inc.

Livermore, J. A., 2007. Factors that Impact
Implementing an Agile Software Development

Methodology. [pdf] Walsh College. Available
through: IEEE Xplore Digital Library at: <http:

//ieeexplore.ieee.org/stamp/stamp.jsp?tp=

&arnumber=6138544> [Accessed 07 November 2013]

Chen, P., 1976. The Entity-Relationship Model -
Towards a Unified View of Data. ACM Transactions
on Database Systems, 1(1), pp.9-36.

Näsholm, P., 2012. Extracting Data from NoSQL
Databases [pdf] Göteburg, Sweden. Available
at: <http://publications.lib.chalmers.se/

records/fulltext/155048.pdf> [Accessed 12
November 2013]

Fowler, M., 2013. Schemaless Data Structures.
[online] Available at: <http://martinfowler.com/

articles/schemaless/> [Accessed 08 November
2013]

Delfosse, V., 2012. UML as a schema candidate
for Graph Databases [pdf] Available at: <http:

//ebookbrowsee.net/vincent-delfosse-uml-

as-a-schema-candidate-for-graph-databases-

pdf-d390375325> [Accessed 05 November 2013]

Stack Overflow, 2013. MongoDB: How to
represent a schema diagram in a thesis?
[online] Available at: <http://stackoverflow.

com/questions/11323841/mongodb-how-to-

represent-a-schema-diagram-in-a-thesis>

[Accessed 05 November 2013]

IX Glossary of Terms
RDBMS: Relational Database Management
System. A type of database which typically uses
SQL as a query language, where tables are created
in a pre-defined schema and tables have cardinality
with one another.
Schema: In terms of databases, can be compared
to that of a plan or blueprint that the data stored
in the database must follow. For example, ’Age’
field must be an integer. Typically spoken about
in reference to an RDBMS, with the exception of a
dynamic schema which belongs to NoSQL.
SQL: Structured Query Language. A language
designed for the purpose of performing create, read,
update and delete operations within a database.
Also allows for complex manipulation of data.
API: Application Programming Interface. Can be
considered an interface which specifies how software

4



components should interact with each other.
ERD: Entity Relationship Diagram. A diagram
used in RDBMS databases to depict tables (referred
to as entities), the data they store, and the
cardinality between tables.

UML: Unified Modelling Language. A standardized
set of diagrams used to in software development
capturing different views of software systems.
For example a UML Class Diagram depicts the
conceptual objects used in a system.

5


