
NachOS

Project: M1-MoSIG

Armando Ochoa, Jing Han, Luan Pham, Mina Cesar, Shubham Khandelwal

January 15, 2015

Contents

1 Introduction 2

2 Our Kernel Features 2
2.1 Interesting Features . 2

3 User Interface 2
3.1 I/O System Call Description . 2

4 Internal Design 3
4.1 Thread Process Model Description 3

5 Test Description 3
5.1 I/O System Call Test . 4
5.2 Thread System Call Test . 4

6 Implementation Issue 4
6.1 Synchconsole class . 4
6.2 UserThread . 5
6.3 Implementing synchconsole and syscalls 5
6.4 Synchronization for read and write operation in Console 5
6.5 Multithreading . 5

7 Group Work Ogranization 5
7.1 Step 1 - 4 . 5

8 Conclusion 5

1

1 Introduction

Nachos(Not Another Completely Heuristic Operating System) is a teaching op-
erating system where we get to implement missing functions that allows us to
understand how an operating system works. The duration for this project is
one month.

The remaining report is organized as follows. Section 2 describes about the
Nachos Kernel Features, Section 3 includes the User-Documentation, section
4 have details of internel design of NachOS. Section 5 and 6 contains testing
description and the issues related to implementation. Our work organization is
written in section 7, Section 8 have the conclusion of the work.

2 Our Kernel Features

Here are some of the Kernel Features which NachOS kernel have:

• Console Input - Output

• Multi-threading

2.1 Interesting Features

3 User Interface

3.1 I/O System Call Description

Exit-

• Convention : void Exit(int status)

• Description : Exit is a function which can be used to quit the process.

Halt-

• Convention : void Halt()

• Description : Halt system call can be used to shut down/power off the
system.

PutChar-

• Convention : void PutChar(char c)

• Description : PurtChar is a function used to write a character c to the
simulated standard output stream.

GetChar-

• Convention : char GetChar()

• Description : GetChar is a function used to read the next character from
simulated standard input stream and returns a char or EOF on the end
of the input or nothing.

2

PutString-

• Convention : void PutString(char*c)

• Description : PutString is a function used to write a string c to the sim-
ulated standard output stream.

GetString-

• Convention : void GetString(char*buffer, int n)

• Description :GetString is a function used to read a string with size n from
the simulated standard input stream into a buffer pointed by buffer.

PutInt-

• Convention : void PutInt(int num)

• Description :PutInt is a function used to write an integar num to the
simulated standard output stream.

GetInt-

• Convention : void GetInt(int *num)

• Description : GetInt is a function used to read the next integar from the
simulated standard input stream into a variable pointed by num.

UserThreadCreate-

• Convention : int UserThreadCreate(void f(void *arg), void *arg)

• Description : UserThreadCreate will create a new thread in the calling
process, the new thread starts execution by invoking a routine named
threadfunction, arg is passed as the sole argument of routine thread-
function.After creation of a new thread, it will return 0 to represent
success or -1 to failure.

UserThreadExit-

• Convention : void UserThreadExit()

• Description : UserThreadExit will terminate the calling thread explicitly,
which will make called thread wait until the calling thread terminate.

4 Internal Design

4.1 Thread Process Model Description

/*insert here about threadcreate/threadexit and halt!!!*/

5 Test Description

All our test for system call are based on functionality verification.

3

5.1 I/O System Call Test

1 - PutChar Test Script:
void print (char c, int n) int i; for (i = 0; i ¡ n; i++) PutChar(c+i);
Input: Characters to be displayed (abcd) Output: abcd
2 - char GetChar(): Test Script :
char Console::GetChar() char ch = incoming;
incoming = EOF; return ch;
Input : A character to be displayed Output : The character that is entered

by the user will be displayed again
3 - void PutString(char*c);
void print (char* c) PutString(c);
int main() print(”Hello World. Here Come The Robots. This was a pleasure

to work with you.”); return 0;
Input : A string to be displayed Output : The string
4- void PutInt(int num);
Testcase int main() int n; GetInt(&n); PutInt(n); Halt();
Input : An integer to be displayed Output: The integer
5 - void GetInt(int *num);
Testcase : int main() int n; GetInt(&n); PutInt(n); return 0;
Input : Read an integer from the console

5.2 Thread System Call Test

1 - UserThreadCreate: Test Script
Input: Output: Conclusion:

6 Implementation Issue

6.1 Synchconsole class

1 Synchronization Issue: Based on the given structure, we have one primitive
console class which can only support read(getchar) and write(putchar) one char-
acter in asynchronization manner. In that case, We developed a new class named
Synchconsole to work in synchronization way and support several new methods
like synputchar and syngetchar which is the synchronization version of putchar
and getchar in console class. We solve this issue by using semaphore writeDone
and readAvail to synchronize read and write operation on the simulated console
environment.

2 String read/write Issue: In order to string, we have developed two new
methods called synchputstring to write string onto the console and synchread-
string to read string from the console.

For SynchReadString(char *buffer,int n): first, we get the two argument
value from register. buffer is a char pointer, we need to get the physical address
value before invoking SynchReadString() because it only works on the kernel
level. We get the physical address of buffer by accessing machine-¿mainMemory[].

For SynchWriteString(char *buffer): In order to get the physical address of
string buffer in kernel level, we need to develop a new internal rountine called as
CopyStringFromMachine(int from, char *to, int n) which used to copy at most
n-length characters from the content of what virtual addr ’from’ points to to

4

a place in phy addr pointed by a char pointer ’to’. CopyStringFromMachine
will use a internal routine named machine-¿ReadMem to read the content of
virtual addr into phy addr. /**need more since CopyStringFromMachine is a
important function**/

3 Int read/write Issue: We use two functions in c library which are snprintf
and sscanf. sscanf will format input content into integar type and snprintf will
format integar type into character type. By using those two functions, we can
use snprintf to transfer char into int when we use SynchPutInt to write integar
value to the simulated standard output by provoking synchPutChar ; we can
also use SynchGetInt to read character value from simulated standard output
by provoking synchGetChar and then we use sscanf to format char into a int
variable.

6.2 UserThread

1 Create:
2 Exit:

6.3 Implementing synchconsole and syscalls

Note: In case of ”GetChar”, when we get a character from console then only we
can call Getchar(): If we do not test this condition and call the ’GetChar’ then
’GetChar’ could return ’EOF’ but there is already a character which could not
be fetched. This condition applies in case of ’PutChar’ too. To print a ’char’,
we have an internal buffer. In this, Before printing another ’char’, we will have
to wait.

———–
If we remove the Halt function, make fails because Main() needs a return

value. If we make it return 0 instead of Halt, without changing anything else,
running the program (make works now) produces a Unexpected user mode ex-
ception. Our solution was to create an exit system call and to store the return
parameter in a register.

From the buffer, we are trying to read as much as we can(defined in the
Size), for the rest, we truncate them.

Part VI -¿ If we remove the call to Halt() at the end of the main function of
putchar, then when we ’make’ for compilation then we get an error which states
that ”control reaches end of non-void function”.

———–

6.4 Synchronization for read and write operation in Con-
sole

6.5 Multithreading

7 Group Work Ogranization

7.1 Step 1 - 4

8 Conclusion

5

