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Abstract

Some definitions and concepts are studied,Manifolds, diffeomorphism
functions, Tangent space, Riemmannian manifolds and Riemannian met-
ric. Also, the Kahler geometry of Lu-Page-Pope quasi-Einstein Metrics
on CP2]CP2 is studied .

1 Foundational Material

1.1 manifold

1.1.1 Definition of manifold

A manifold M of dimension d is a connected paracompact Hausdorff space
for which every point has a neighborhood U that is homeomoorphic to an open
subset Ω of Rd Such a homeomorphism x : U → Ω is called a (coordinate)
chart.An atlas is a family of charts {Uα, xα} for which the Uα constitute an
open covering of M . Note that A point p ∈ Uα is determined by xα(p); hence
it is often identified with xα(p).Often, also the index α is omitted, and the
components of x(p) ∈ Rd are called local coordinates of p.

1.1.2 differentiable atlas

An atlas {Uα, xα} on called a manifold is called diffeomorphism if all chart
transitions xβ ◦xα : xα(Uα

⋂
Uβ)→ xβ(Uα

⋂
Uβ) are differentiable of class C∞

(in case Uα
⋂
Uβ 6= φ). A maximal differentiable atlas is called a differentiable

structure, and a differentiable manifold of dimension d is a manifold of dimension
d with a differentiable structure. From now on, all atlases are supposed to be
differentiable. Two atlases are called compatible if their union is again an atlas.
In general, a chart is called compatible with an atlas if adding the chart to the
atlas yields again an atlas. An atlas is called maximal if any chart compatible
with it is already contained in it.

1.1.3 examples

1.2 Tangent Space

1.2.1 Tangen vector and Tangent Space

a tangent vector is an infinitesimal displacement at a specific point on a man-
ifold. The set of tangent vectors at a point P forms a vector space called the
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tangent space at P , and the collection of tangent spaces on a manifold forms a
vector bundle called the tangent bundle.
One of the most important tools in the theory of smooth manifolds is the no-
tion of the tangent space to a manifold at a given point. In section five David
Mond (Lecture Note) have presented three different approaches to the defnition
of tangent spaces and we want to explain why they are equivalent. All these ap-
proaches are useful because each one has some properties. The ”tangent space”
(whatever that means) to a smooth manifold M at a point p ∈ M is denoted
TpM it is equipped with a canonical structure of a real vector space whose di-
mension is equal to the dimension, dimpM , of M at p. As a set, TpM consists
of all ” tangent vectors” to M at p, so understanding the defnition of TpM is
more or less the same as understanding the defnition of a tangent vector Let
U ⊂ Rn be an open set (wheren ≥ 1) ,and fix p ∈ U . Whatever the definition
of a tangent space is, the answer it should give in this particular case is that
TpU is the same vector space Rn then how can we describe this vector space
in terms of the natural smooth manifold structure that we have on U , without
explicitly referring to the embedding U ↪→ Rn
There are three difinitions of tangent space in David Mond’s lecutre note which
can be classified into:
via derivations acting on function
A dreivation at p is an R lineaner map C∞(M) → R which is aderivation in
Leibnit’s sense: f(x)v · g+g(x)v · f .The tangent space to M at p is the space
of derivations at p.
the coordinates were not used to define it. the basis of definition 1.1 is that
if f ∈ C∞(M) then f ◦ φ−1 : Rn → R can be written as f(x1, ..., xn). The
derivation ∂

∂xi is the usual partial derivative : ∂
∂xi [f ] = ∂f

∂xi

via coordinates
Let φα : Uα ⊂ M → Rn be all charts containing p, so that p ∈ Uα . For each
such chart introduce a copy of Rn , denoted by Rnα, and form the disjoint union
of all these vector spaces. :

∐
α Rnα

Define an equivalence relation ∼ on this disjoint union by declaring vα ∈ Rnα
and vβ ∈ Rnβ to be equivalent:

vα ∼ vβ if and only if dφα(p)(φβ ◦ φ−1α )(φα(p))vα . Then define TpM =∐
α Rnα� ∼.

via curves
A smooth curve γ through p is a map γ(−ε, ε)→M with γ(0) = p. Two smooth
curves γ1, γ2 through p “agree to first order” if, in some coordinate chart con-
taining p their coordinate images agree to first order as curves in Rn. A tangent
vector at p is an equivalence class of curves passing through p. The tangent
space is the set of all such equivalence classes of curves.This definition has a
clear geometric meaning and is fairly easy to state. It also makes the defnition
of the diferential of a smooth map very easy and natural, and it makes the chain
rule completely trivial.
Two main disadvantages of the above approach to defning TpM are that it
doesn’t explain where the vector space structure comes from, and it does not
generalize well to algebraic varieties.
A tangent vector at a point P on a manifold is a tangent vector at P in a co-
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ordinate chart. A change in coordinates near P causes an invertible linear map
of the tangent vector’s representations in the coordinates. This transformation
is given by the Jacobian, which must be nonsingular in a change of coordinates.
Hence the tangent vectors at P are well-defined. A vector field is an assignment
of a tangent vector for each point. The collection of tangent vectors forms the
tangent bundle, and a vector field is a section of this bundle.
Let V be a finite dimensional vector spcae and {−→e 1, ...,

−→e n} be a basis for
V, j ∈ {1, ..., n} then we can define a dual vector space V ∗ such that θi ∈ V ∗ a
basis of V ∗ and F : V → R is linear
Since we have already roted that dim(V ) = dim(V ∗) to prove that {θ1, θ2, .., θn}
is a basis for V ∗, it suffices to show that span(θ1, θ2, .., θn) = V ∗. Along the
way we will verity the statment that if F ∈ V ∗ then F =

∑n
i=1 F (−→e i)θi

Let F ∈ V ∗ be arbitrary. To see that F =
∑n
i=1 F (−→e i)θi it suffices to show

that F (−→v ) =
∑n
i=1 F (−→e i)θi(−→v ) for all −→v ∈ V

To begin let −→v ∈ V , since {−→e 1, ...,
−→e n} is a basis for V then there exist

λ1, ..., λn ∈ R such that −→v =
∑n
i=j λj

−→e j
Now

∑n
i=1 F (−→e i)θi(−→v ) =

∑n
i=1 F (−→e i)θi(

∑n
j=1 λj

−→e j) but as we know that

θi(
−→v ) = θi(λ1

−→v 1 + ...+λn
−→v n) = λ1θi(

−→v 1) + ....+λiθi(
−→v i) + ..+λnθn(−→v n) =

λ1.0 + ...+ λi.1 + ...+ λn.0 = λi because θi(
−→e j) = δij =

{
1 if i = j
0 if i 6= j

Then
∑n
i=1 F (−→e i)θi(−→v ) =

∑n
i=1 F (−→e i)λi =

∑n
i=1 λiF (−→e i) = F (

∑n
j=1 λj(

−→e j) =

F (−→v )

1.3 Riemannian Geometry

1.3.1 Riemannnian Manifold

The Riemannian metric g provides us with an inner product on each tangent
space and can be used to measure angles and the lengths of curves in the mani-
fold. This defnes a distance function and turns the manifold into a metric space
in a natural way. The Riemannian metric on a differentiable manifold is an
important example of what is called a tensor field.

1.3.2 examples

1.3.3 connection

1.3.4 curvature and Ricci tensor

2 Introduction

2.1 Almost complex Structure

2.2 Hermitian Almost complex Manifold

A quasi-Einstein metric is a complete Riemannian manifold (M, g) where the
metric g satisfies:

Ric(g) +∇2φ− 1
mdφ⊗ dφ = λg
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3 U(2)- INV ARINTKÄLERMETRICON CP2]CP2

4 EXPLICIT METRICS

4.1 Page’s Einstein metric

4.2 THE Koiso-Cao Kahler Ricci Solution

4.3 THE Lu-Page-Pope Metrics

4.4 Kim-Kim first integral

4.5 Boundary behavior

5 Attempt at an integral constraint

5.1 Wang-Zhu

6 References
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