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Abstract Personal Rapid Transit (PRT) is an emerging urban transport mode. A PRT sys-
tem operates much like a conventional hackney taxi system, except that the vehicles are
driven by computer (no human driver) between stations in a dedicated network of guide-
ways. The world’s first two PRT systems began operating in 2010 and 2011. In both PRT
and taxi systems, passengers request immediate service; they do not book ahead. Perfect
information about future requests is therefore not available, but statistical information about
future requests is available from historical data. If the system does not use this statistical
information to position empty vehicles in anticipation of future requests, long passenger
waiting times result, which makes the system less attractive to passengers, but using it gives
rise to a difficult stochastic optimisation problem. This paper develops three lower bounds
on achievable mean passenger waiting time, one based on queuing theory, one based on the
static problem, in which it is assumed that perfect information is available, and one based
on a Markov Decision Process model. An evaluation of these lower bounds, together with
a practical heuristic developed previously, in simulation shows that these lower bounds can
often be nearly attained, particularly when the fleet size is large. The results also show that
low waiting times and high utilisation can be simultaneously obtained when the fleet size is
large, which suggests important economies of scale.

Keywords Personal Rapid Transit · Empty Vehicle Redistribution · Taxi · Queuing Model ·
Markov Decision Process ·Waiting Time

1 Introduction

Personal Rapid Transit (PRT) is an emerging urban transport mode. It uses small, computer-
guided vehicles to carry individuals and small groups between pairs of stations on a ded-
icated network of guideways. The vehicles operate on-demand and provide direct service
from origin station to destination station. Two PRT systems are now operational, one at
Masdar in Abu Dhabi (2getthere 2011), and one at Heathrow Airport in London (ULTra
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Fig. 1 Heathrow Pod driverless vehicles and guideway (a), control room (b), vehicle and bay in the Terminal
5 station (c) and vehicles and station in Business Parking (d). PRT vehicles, stations and infrastructure are
smaller than typical Automated People Mover and urban rail systems. Each vehicle seats four passengers
with luggage. Photographs courtesy of ULTra PRT Ltd, 2011.

PRT 2010). The ‘Heathrow Pod’ PRT system is a last mile circulator with three stations
and twenty-one driverless vehicles (Fig. 1), that connects Business Parking with Terminal 5.
Many other recently proposed PRT systems provide connections between train stations, bus
stations or off-site car parks and a wide range of destinations (Bly and Teychenne 2005).
Used in this way, PRT can increase the efficacy of other public transport modes. In order for
PRT to do this, it must provide a high-quality service, which means low passenger waiting
times, low travel times and high levels of safety and comfort.

The focus of this paper is on passenger waiting times. PRT systems operate much like
conventional taxi systems. Passengers request immediate service (that is, they do not book
ahead) from their origin station to their chosen destination station. A central control system
can move empty vehicles reactively, in response to a request that has just been received,
and proactively, in anticipation of future requests. The empty vehicle redistribution (EVR)
problem is to decide which vehicles to move and where to move them. Without proactive
movements, empty vehicles tend to wait idle at stations where there is a net inflow of oc-
cupied vehicles. This leads to long passenger waiting times at stations where there is a net
outflow of occupied vehicles (Lees-Miller et al. 2010). Proactive empty vehicle movements,
which must be based on statistical knowledge of passenger demand, are therefore required
in order to provide low waiting times. Several practical and fairly effective heuristics have
been developed that make proactive empty vehicle movements (Lees-Miller and Wilson
2011, 2012). Lower bounds on mean passenger waiting times are desirable in order to assess
these heuristics in absolute terms. They may also provide insight into the basic performance
characteristics of demand responsive transportation systems that use small vehicles, includ-
ing PRT and taxis, in a manner that is independent of the details of the algorithms used to
operate them.

This paper develops three lower bounds on mean passenger waiting times using different
methods. The first is based on a queuing model (Sect. 4) that is constructed to have the



Passenger Waiting Time in PRT 3

same capacity (as defined in Sect. 3) as the PRT system that it models. The second lower
bound is obtained from a static version of the EVR problem, in which perfect information
is available about future requests (Sect. 5). This is a type of vehicle routing problem (VRP)
(Toth and Vigo 2002), and it is NP-hard. It is not presently possible to obtain provably
optimal solutions for usefully large instances, but a simple constructive heuristic, here called
Static Nearest Neighbours (SNN), produces good solutions (Lees-Miller and Wilson 2012)
that give an estimate of this lower bound. The third lower bound is provided by a Markov
Decision Process (MDP) model (Sect. 6). MDPs are a formalism for modelling discrete time
control problems that involve uncertainty. For small systems, on which the MDP model can
be solved exactly, it is possible to obtain a provably optimal solution to the EVR problem for
a given system and demand. The three lower bounds, along with a practical heuristic called
Sampling and Voting (SV) from Lees-Miller and Wilson (2011), are then evaluated on the
Heathrow Pod system (Sect. 7).

The EVR problem in PRT is a kind of dynamic VRP. The majority of the VRP literature
is concerned with static problems, in which all of the requests are known in advance, but
significant work has been done on extending VRP methods to fully or partially dynamic
settings, in which all or some requests are received as the system is operating; see Berbeglia
et al. (2007, 2010) for recent surveys. The most closely related work found in the VRP
literature is that of Yang et al. (2004), Bent and Van Hentenryck (2004) and Hvattum et al.
(2006). The SV method considered in Sect. 7 is based on ideas from these papers. Concepts
from queuing theory have been applied to related fully dynamic VRPs (Bertsimas and Levi
1996; Swihart and Papastavrou 1999). However, none of these is an exact match for the EVR
problem.

PRT has much in common with a conventional taxi service, and the principle of proactive
empty vehicle movement also applies to conventional taxis. The use of GPS-enabled smart
phones to make short-notice taxi bookings is a recent development (e.g., www.uber.com)
that is blurring the line between conventional street-hail (hackney) taxis, for which pas-
sengers generally do not book ahead, and private hire vehicles, for which passengers must
book ahead. The lower bounds developed here might also be of interest for such services,
especially in view of the fact that they are currently premium services with users who have
a high value of time. Most existing work on taxi dispatch focuses on reactive algorithms
(Horn 2002; Bell and Wong 2005; Seow et al. 2010) and related operational challenges such
as travel time estimation (Lee et al. 2004) and the handling of both advanced bookings and
immediate requests (Horn 2002; Wang et al. 2009). Approaches to proactive movement in-
clude random roaming (Lee et al. 2004), the ‘go to hotspot’ heuristics of Li (2006), and the
‘rank homing’ heuristics of Horn (2002). Similar problems that involve the repositioning of
idle vehicles arise in the control of automated guided vehicle (AGV) systems (Vis 2006) and
elevators (Wesselowski and Cassandras 2006).

2 Assumptions and Notation

The three main factors that determine passenger waiting times are congestion on the guide-
way, congestion in stations and the availability and locations of empty vehicles. For very
large systems with many vehicles, congestion effects will often be significant, but most PRT
systems proposed for the near and medium term will operate well below the congested limit.
This motivates the following simplifying assumptions.

1. Congestion on the guideway is ignored, so vehicles take quickest paths, and the travel
times between stations are constants.
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2. Congestion in stations is ignored; any delays in stations are constants included in the
travel times.

Under these assumptions, the relevant characteristics of a PRT network are the number
of stations and the quickest path times between those stations. Let S denote the set of sta-
tions, and let nS denote the number of stations. For each pair of distinct stations i and j in S,
let ti j denote the quickest path trip time from i to j, in minutes, and define constants ti j = 0
when i = j. Taken together, these ti j form a trip time matrix. It is further assumed that the
trip times satisfy the strict triangle inequality,

tih + th j > ti j (1)

for any three distinct stations i, j and h in S. That is, even if station h is ‘on the way’ from
station i to station j, there is a time penalty if the vehicle stops at h, due to acceleration and
deceleration, passenger loading and unloading, or congestion in the station.

The unit of passenger demand will be the request. Each request results in a single occu-
pied vehicle trip, which may be for an individual passenger or a small party of passengers
travelling together by choice. This ignores ride sharing, in which parties can combine to
share a vehicle, which can significantly increase capacity (Lees-Miller et al. 2009). Each re-
quest has associated with it an origin station, a destination station and the time at which the
system receives the request. It is assumed that every request is for immediate travel from its
origin station, so the waiting time of a request is the delay between when the system receives
it and when a vehicle picks up the request.

It is assumed that requests for travel from station i to station j are received according
to a Poisson process with rate di j in requests per minute, where di j = 0 if i = j (no recre-
ational trips). The Poisson processes for pairs of stations are assumed to be independent and
stationary (that is, the di j do not vary with time). Taken together, these di j form a demand
matrix. It is assumed that the demand matrix is known from historical data.

The capacity of a vehicle is defined to be one request. It is assumed that the number of
vehicles in the fleet is fixed, and that the vehicle fleet is homogeneous (that is, vehicles are
interchangeable). The set of vehicles will be denoted K, and nK will denote the fleet size.

3 Capacity and the Fluid Limit

The waiting times that can be achieved for a given demand on a given system depend
strongly on how close the demand is to the system’s theoretical maximum capacity. Un-
der the above assumptions, there is a well-known (Anderson 1978) method for computing
the capacity of a PRT system. This method can also be derived from the urban taxi eco-
nomics model of Yang et al. (2002). The method works at a macroscopic level, where the
variables are long run average flows of vehicles between stations. The flows of occupied
vehicles are given by the demand matrix. We want to determine the empty vehicle flows
required to balance these occupied vehicle flows, and short empty trips are preferred. Let xi j
be the flow of empty vehicles from station i to station j, with xi j = 0 if i = j. This gives a
minimum cost network flow problem:

min ∑
i, j∈S

ti jxi j (2)

s.t.∑
j∈S

(di j + xi j) = ∑
j∈S

(d ji + x ji) ∀ i ∈ S (3)

xi j ≥ 0 ∀ i ∈ S, j ∈ S (4)
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The objective function (2) is the number of vehicles that will, on average, be required to
sustain the flows of empty vehicles (minutes times vehicles per minute gives vehicles).
Constraints (3) are flow conservation constraints that ensure that the total number of ve-
hicles remains constant. This problem can be solved with standard techniques (Bertsimas
and Tsitsiklis 1997).

An optimal solution, x∗i j, to the problem (2) defines the long run average flows of empty
vehicles between each pair of stations. It also determines the minimum number of vehicles
required to serve the demand, which is

n∗K = ∑
i, j∈S

ti j(di j + x∗i j). (5)

The ratio
ρ = n∗K/nK (6)

is then a measure of how close the demand is to the maximum theoretical capacity of the
system. It therefore acts like a utilisation or demand intensity factor in queuing theory: when
ρ > 1, requests are being received faster than the system can serve them, because it does not
have enough vehicles, so the queues of waiting passengers, and their waiting times, grow
without bound. This connection with queuing theory will be made more concrete in the next
section.

4 An M/G/s Queuing Model

The aim here is to use the results of the fluid limit problem (2) to estimate passenger waiting
times. To this end, we will model the whole PRT system as a multi-server queuing system
in which the ‘customers’ are passengers and the ‘servers’ are vehicles. The key feature of
this queuing system is that its demand intensity is the same as that for the PRT system that it
models. It will be seen that the queuing system is an exact model of the corresponding PRT
system when all requests originate from a single station, but when there are multiple origin
stations, it tends to underestimate achievable passenger waiting times.

Formally, the model is an M/G/s queue, in Kendall notation (Adan and Resing 2002).
The M, for Markovian, means that requests are received according to a Poisson process. The
G refers to a General service time distribution, a particular instance of which will be defined
below. The s denotes the number of servers, which is the fleet size, nK .

The mean rate for the customer arrival process is the total request rate for the whole
system, ∑i, j di j. The main task is to define the service time distribution. The service time for
a single request is taken to be the sum of the occupied and empty trip times required to serve
the request. Each request requires one occupied vehicle trip, with origin and destination as
determined by the request, and zero or more empty vehicle trips to the origin of the next
request that happens to be assigned to the same vehicle. The sequence of empty trips can be
viewed as a random walk through the network. However, we will see that if an empty vehicle
moves according to the optimal empty vehicle flows x∗i j, then this random walk consists of at
most one empty trip. Each request therefore involves three stations: the request’s origin and
destination, and the empty trip’s destination, which may be same as the request’s destination,
if there is no empty vehicle trip. Let the random variables I, J and H denote these three
stations, respectively. To simplify notation, let

diσ = ∑
j∈S

di j, dσ i = ∑
j∈S

d ji, and dσσ = ∑
i, j∈S

di j
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denote the row, column and total sums of the demand matrix, and define x∗iσ and x∗
σ i simi-

larly. The demand matrix directly defines the joint distribution of I and J, namely

Pr(I = i,J = j) =
di j

dσσ

. (7)

To define the distribution of the empty trip’s destination, H, conditional on the occupied
trip’s destination, J, we proceed as follows. Consider a vehicle that has just completed an
occupied trip to station j ∈ S; it may now make an empty trip to another station, or it may
stay at j. Define

p jh =
x∗jh

d jσ + x∗jσ
(8)

as the probability that the vehicle’s next trip is to station h ∈ S, when h 6= j. In (8), the
numerator is the empty flow out of station j, and the denominator is the total (occupied plus
empty) flow out of station j. The probability that the vehicle stays at j is then set to

p j j = 1−∑
h∈S
j 6=h

p jh (9)

so that the p jh sum to one. We then have Pr(H = h|J = j) = p jh.
The reason that there is at most one empty vehicle trip when the empty vehicles move

according to the probabilities p jh is that, because the trip times satisfy the strict triangle
inequality (1), any optimal solution to problem (2) must satisfy

x∗σ i > 0 =⇒ x∗iσ = 0 (10)

for all stations i. That is, it is never optimal (in the fluid limit) for a station to have empty
vehicle flow both in and out; it would always be better to route the flow directly to its
eventual destination. The number of empty trips in the random walk is therefore zero if
x∗jh = 0 for all h 6= j, since this implies p jh = 0 for all h 6= j, and p j j = 1. Otherwise, we
have x∗

σh > 0, and (10) implies that x∗hσ
= 0, so there is no empty flow out of h, and the

vehicle’s random walk ends there, after one trip.
It should also be noted that the denominator in (8) is zero if and only if a station has no

demand in or out (that is, diσ = dσ i = 0), so stations with no demand must be excluded from
the queuing model. This does not affect the result, because the strict triangle inequality for
trip times also ensures that any such station also has x∗iσ = x∗

σ i = 0 in any optimal solution, so
empty vehicles moving according to the optimal flows never visit stations with no demand.

We can now define the service time of a request as a random variable

τ = tIJ + tJH (11)

with distribution defined by the joint distribution of I, J and H. The relevant figure for
computing the demand intensity for the queuing system is the expected service time, E[τ],
which is given by E[tIJ ]+E[tJH ]. The expected occupied trip time is

E[tIJ ] = ∑
i∈S

∑
j∈S

ti j Pr(I = i,J = j) (12)

=
∑i, j∈S ti jdi j

dσσ
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using (7). For the expected empty trip time, we need the joint distribution of J and H, which
is

Pr(J = j,H = h) = Pr(H = h|J = j)Pr(J = j)

= Pr(H = h|J = j)

(
∑
i∈S

Pr(I = i,J = j)

)

=
p jhdσ j

dσσ

by summing out the possible origin stations, I. The expected empty trip time is then

E[tJH ] = ∑
j∈S

∑
h∈S

t jh
dσ j p jh

dσσ

(13)

= dσσ
−1

∑
j∈S

dσ j

∑
h∈S
h 6= j

t jh p jh + t j j p j j


= dσσ

−1
∑
j∈S

dσ j ∑
h∈S
h6= j

t jh

(
x jh

d jσ + x∗jσ

)

= dσσ
−1

∑
j∈S

(
dσ j

d jσ + x∗jσ

)
∑
h∈S
h6= j

t jhx∗jh

=
∑ j,h∈S t jhx∗jh

dσσ

where the last equality holds because for each j, either x∗
σ j = 0, in which case

dσ j

d jσ + x∗jσ
=

dσ j + x∗
σ j

d jσ + x∗jσ
= 1

by flow conservation (3), or x∗
σ j > 0, in which case x∗jh = 0 for all h, by (10). So, in summary,

the expected service time is

E[τ] =
∑i, j∈S ti j(di j + x∗i j)

dσσ

=
n∗K

dσσ

(14)

where n∗K is the fleet size estimate (6) from the fluid limit.
The intensity of the demand on an M/G/s queuing model is ρM/G/s = λ/(µs) where λ

is the mean customer arrival rate, µ is the mean service rate (per server), and s is the number
of servers. As with the intensity measure defined for the fluid limit in (6), ρM/G/s > 1 means
that customers are arriving faster than the system can serve them. For the model developed
here, λ = dσσ , µ = 1/E[τ], and s = nK , so this condition is equivalent to

ρ
M/G/s =

λ

µs
=

dσσ

(dσσ/n∗K)nK
=

n∗K
nK

which is the same as the intensity (6) computed for the fluid limit.
The queuing model defined here therefore matches the PRT system that it models in at

least one important way: the waiting times diverge as the intensity of the demand approaches
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one. The main limitation of this queuing model is that, while it accurately represents the total
empty vehicle travel required according to the fluid limit calculation, it does not represent
the case where a vehicle becomes idle at the ‘wrong’ station for the current request. That is,
there may be an idle vehicle (and so a free server in the system), but it may not be located at
the same station as the passenger, in which case the queuing model predicts a zero wait, but
the passenger must actually wait for the vehicle to move empty to his origin station. When
all of the demand originates at a single station (and empty vehicles are proactively moved
back to that station), the queuing model is exact, because vehicles never become idle at the
wrong station. When there are multiple origins, the waiting times predicted by the queuing
model may not be achievable in practice.

To estimate the mean waiting times for the queuing model, we use simulation, because
no exact analytical results are known for the mean waiting time in an M/G/s queue when
s > 1. When s = 1, the Pollaczek-Khinchine formula gives a closed-form expression for the
mean waiting time, but no such closed form is known for the multi-server case (Adan and
Resing 2002). A large literature is available on approximations for the M/G/s queue; see
Boxma et al. (1979) and, for a recent survey, Gupta et al. (2010). Closed form results are
known for the M/M/s queue (Adan and Resing 2002), in which the service time distribution
is Markovian. However, Markovian service times with a sufficiently large mean tend to be
over-dispersed relative to the distributions obtained from (7), (8) and (9) for τ . There are
efficient numerical schemes for the M/D/s queue (Tijms 2006), in which service times are
deterministic, which is the case for some special networks and demands.

Whereas the queuing model defined in this section includes an implicit assumption that
empty vehicles do not become idle at the ‘wrong’ stations, the next section describes how
vehicle routes could be planned to avoid this, if perfect information about future requests
were available.

5 The Static Problem

The static EVR problem, in which all of the requests to be served are known in advance,
will be formulated on a vehicle-request graph that is constructed from the PRT system. We
have so far described the EVR problem in terms of vehicles moving between stations. In
what follows, however, it will be more convenient to think about vehicles moving between
requests. Let the vehicle-request graph, G, be a directed, weighted graph with node set K∪
R∪{s}, where R is a set of request nodes, K is a set of vehicle nodes, and s is a special vehicle
sink node. Each vehicle begins at its vehicle node, visits zero or more request nodes, and then
terminates at the sink node. The sink node is just a technicality; it does not correspond to
anything physical. The arc set is

E = {(u,v) : u ∈ K∪R,v ∈ R∪{s},u 6= v}

and the arc weights are delays, defined to encode the structure of the original PRT network,
as follows. For readability, we will write the trip times ti j as t(i, j). For each request u ∈ R,
let iu, ju and eu denote its origin station, destination station and time of receipt, respectively.
We will assume that the first request is received at time 0. The vehicles may initially be idle
at stations, or they may still be serving passengers that arrived in the past, before the set of
requests being considered now. For each vehicle u ∈ K, define constants ju and eu so that
vehicle u first becomes idle at station ju at time eu; if the vehicle is initially idle, then eu = 0.
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Fig. 2 An example of a vehicle-request graph. The PRT network (a) includes stations, merges and diverges,
but only quickest-path times are important for the vehicle-request graph. The arc weights are travel times, in
minutes. There are two vehicles, k1 and k2; k1 will arrive in station A in one minute, and k2 is idle at station
C. A complete list of requests (b) is provided, including times of receipt, origins and destinations; here there
are three requests. The resulting vehicle-request graph (c) has a node for each vehicle and each request, and
a sink node, s. Arc weights correspond to vehicle travel times. Suppose that, for example, vehicle k1 serves
requests r0, r1 and r2, in that order. First, it finishes its current trip to station A, which takes 1 minute; then
it arrives at A, which is r0’s origin. So, the arc (k1,r0) has weight 1. It then serves r0 by moving from A to
B, which takes 3 minutes, and moves empty for 2 minutes from r0’s destination, B, to r1’s origin, C; so, arc
(r0,r1) has weight 2+3 = 5. This repeats for r2, and then the vehicle terminates at the sink node.

The arc weights

wuv =


eu + t( ju, iv) u ∈ K, v ∈ R
t(iu, ju)+ t( ju, iv) u,v ∈ R, u 6= v
0 u ∈ K∪R, v = s

are defined to include both occupied travel time (eu if u ∈ K or t(iu, ju) if u ∈ R) and empty
travel time. Note that if ju = iv, then there is no empty vehicle trip required, and t( ju, iv) = 0.
Also, since the t(i, j) satisfy the triangle inequality (1), so do the arc weights. An example
construction is given in Fig. 2.

The problem can then be stated using the following arc flow formulation. For each arc
(u,v)∈ E, let xuv be a binary variable; xuv = 1 signifies that a vehicle traverses arc (u,v), and
xuv = 0 signifies that no vehicle traverses that arc. For example, if u and v are request nodes,
then xuv = 1 means that a vehicle serves request u and then proceeds to pick up request v. For
each request u, let the variable tu be the time at which a vehicle picks up that request; this is
the time at which the vehicle departs from the request’s origin station. It is also convenient
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to define constants tu = 0 for u ∈ K. The Static EVR problem is then:

min ∑
u∈R

tu (15)

s.t. ∑
v:(u,v)∈E

xuv = 1 ∀ u ∈ K∪R (16)

∑
u:(u,v)∈E

xuv = 1 ∀ v ∈ R (17)

∑
u:(u,v)∈E

xus = nK (18)

xuv = 1 =⇒ tu +wuv ≤ tv ∀ (u,v) ∈ E,v 6= s (19)

eu ≤ tu ∀ u ∈ R (20)

tu ≤ tv ∀ (u,v) ∈ EFCFS (21)

xuv ∈ {0,1} ∀ (u,v) ∈ E (22)

Request u’s waiting time is tu− eu, so the objective (15) is equivalent to minimising
the total waiting time, since the eu are constants, and hence the average waiting time, since
all requests are served. Constraints (16), (17) and (18) ensure that each request is served
by exactly one vehicle, and that each vehicle terminates at the sink node. (Constraint (18)
is actually redundant.) The vehicle trips can be determined by starting from each vehicle
node and following the arcs (u,v) for which xuv = 1, through zero or requests, to the sink
node. Constraints (19) ensure that pickup times are updated according to the vehicle flows.
These are conditional constraints: if a vehicle serves request u and then request v (that is, if
xuv = 1), the vehicle must serve u and then move from his destination to v’s origin before
picking up v. Constraints (20) are one-sided time window constraints that ensure that request
u is not picked up before it is received, at eu. Constraints (21) are precedence constraints
that ensure that requests with the same origin station are served in first-come-first-served
order, with

EFCFS = {(u,v) : u ∈ R, v ∈ R, iu = iv, eu < ev} .
The static EVR problem is NP-hard, because it generalises the minimum latency version

of the asymmetric travelling salesman path problem, which is NP-hard (Nagarajan and Ravi
2008). So far, some small instances (10–20 requests) have been solved exactly with mixed
integer linear programming using the technique of van Eijl (1995) to linearise the conditional
constraints (19). However, here we are interested mainly in average waiting times over large
numbers (thousands) of requests, for which exact solution is not currently feasible, so we
rely on a heuristic. The heuristic used here is a simple nearest-neighbour method, in which
the requests are considered in ascending order by er, and the vehicle that minimises the
request’s waiting time is assigned, subject to a number of tie-breaking rules; see Lees-Miller
and Wilson (2011) for details.

The waiting times that can be attained on the static problem are not generally attainable
in practice, because the PRT system does not have the benefit of perfect information about
future requests — it has only statistical information. The model developed in the next section
takes this uncertainty about future requests into account.

6 The MDP Model

MDPs are a formalism for modelling discrete time control problems in which the outcome
is at least partially due to random chance. At each time step, the process is in a state s, and
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the decision maker takes an action a, that is valid in this state. The process then moves to
a new state, s′, for the next time step, with a given probability Pr(s,a,s′). Each state has an
associated reward, R(s), which the decision maker receives upon entering state s. The aim
is to find a corresponding policy that the decision maker can follow to choose which action
to take in each state; in its simplest form, a policy is a table that maps states to actions. An
optimal policy is one that maximises the (discounted) sum of the rewards that the decision
maker receives over time.

This section shows how to define an MDP for a given scenario — that is, for a given trip
time matrix, demand matrix and fleet size. In particular, we will define the states, the actions
that are valid in those states, the transition probabilities that relate states and actions, and the
structure of the rewards. The rewards are defined so that maximum total reward corresponds
to minimum total passenger waiting time. An optimal policy is thus an optimal empty ve-
hicle redistribution strategy for the corresponding scenario (subject to the assumptions in
Section 2 and the simplifications below).

A range of standard techniques are available to find good policies. For small MDPs,
provably optimal policies can be obtained by dynamic programming (Puterman 2005), which
is the method used in this paper. For larger systems, which generate larger MDPs on which
dynamic programming is computationally infeasible, algorithms such as approximate dy-
namic programming (Bertsekas and Tsitsiklis 1996; Powell 2007), reinforcement learning
(Sutton and Barto 1999) and receding horizon control (Wesselowski and Cassandras 2006)
can produce high-quality policies.

The relevant system state consists of (i) the queue of requests at each station, and (ii)
the position of each vehicle. Here we will represent only the queue length; this effectively
means that passengers do not tell the system their destination until a vehicle picks them up.
This is sometimes the case in practice, but if destinations are known, as is usually the case in
PRT, it is a somewhat pessimistic assumption at high demand. To represent vehicle positions
efficiently, we make two observations. The first is that vehicles are interchangeable, and the
second is that it is not necessary to know where a vehicle is coming from, but only where
it is going to and how long it will be until it gets there. These imply that it is sufficient to
know only the number of vehicles with each possible (discretised) ‘time until arrival’ at each
station. The system state is then as follows.

Time is taken to be discrete with unit time steps, with all ti j integer. At time t = 0,1, . . . ,
let qi be the number of requests at station i, and let bik be the number of vehicles that are k
time steps away from station i, for k = 0, . . . , tmax

i −1, where tmax
i = max j t ji is the duration

of the longest trip to station i. Here, bi0 is the number of vehicles that are either idle at
station i or will become idle before time t + 1 (unless they are used by passengers or sent
away empty). Every vehicle is counted in exactly one bik, so ∑i,k bik = nK in any valid state.
The system state is then a vector with components for all of the qi and bik. Fig. 3 gives an
example of how to encode the state of the system in this way.

The action taken at time t determines the empty vehicle movements that the system will
make over the course of the time step. It can in principle send any of the bi0 vehicles at
station i empty to any other station. However, if there are passengers queuing at station i, it
is undesirable to have the system move their vehicles away empty. So, queued requests are
given priority over empty vehicle movements by taking

āi = max{0,bi0−qi}

as the number of vehicles available to be moved empty from station i. An action is then
specified by a matrix A with non-negative integer entries ai j that give the number of empty
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(a)

(b)

i bi0 bi1 bi2 bi3 bi4
BPA 1 0 0 0 0
BPB 1 1 0 0 0
T5 0 0 0 2 0

(c)

Fig. 3 (a) The guideway alignment of the Heathrow Pod Personal Rapid Transit system. The system has
three stations, T5 (Terminal 5), BPA (Business Parking A) and BPB. (b) Illustration of the MDP state space
for this system. The trip time between BPA and BPB (or back) is roughly one minute, and the trip time from
T5 to either car park station (or back) is roughly five minutes, so we choose one minute as the time step for the
MDP model. The time steps are marked by filled circles. In this example, there are five vehicles, k1, . . . ,k5.
(c) The ‘time until arrival’ representation for the vehicle positions in (b). Note that k4 and k5 are both three
time steps from T5, so the corresponding entry in the table is 2, and also that the sum of the entries is equal
to the fleet size.

vehicles to move from station i to station j. The sum of the off-diagonal entries in each row,
ai = ∑ j, j 6=i ai j, must satisfy ai ≤ āi for any valid action.

We now turn to the description of all possible successor states and the corresponding
transition probabilities. The randomness in the system is from the passenger requests. Let
the random variable Ni be the number of requests in [t, t +1) at station i; it is assumed that
the Ni has a Poisson distribution with rate parameter diσ . Some of these Ni requests may be
served by vehicles in this time step, and the rest will be added to the queue at station i. This
means that each state technically has an infinite number of successor states, and that the state
space is infinite, because Ni is unbounded above. In order to use dynamic programming, the
state space must be made finite, so we truncate the queues at an arbitrary positive length,
qmax, beyond which requests are discarded. The largest number of new requests at i that



Passenger Waiting Time in PRT 13

must be considered is then
N̄i = qmax−qi +bi0−ai

since there are qi requests in the queue already, and up to bi0− ai vehicles are available to
serve (new or queued) requests this time step.

Similarly, the total number of requests at i, either new or queued, that the system serves
in the current time step is

Vi = min{qi +Ni,bi0−ai}.

Each of these requests has a destination, which is also random. Let the random variable
Mi j be the number of requests from station i to station j, and let the random vector Mi =
(Mi,1, . . . ,Mi,nS) denote the numbers of trips from i to all destinations; Mi then has a multino-
mial distribution for Vi events, where the probability of the event corresponding to a request
to station j is di j/diσ .

We can now define the next state in terms of these random variables. The number of
queued requests at time t +1 will be

q′i = qi +Ni−Vi

and the ‘times until arrival’ at time t +1 will be

b′ik =


θik +bi,k+1 +bik−∑ j(Mi j +ai j), k = 0
θik +bi,k+1, k = 1, . . . , tmax

i −2
θik, k = tmax

i −1
.

where θik is the number of vehicles (occupied or empty) that start new trips to station i that
are k+1 time steps long; it is given by

θik = ∑
j
[I(t ji = k+1)(M ji +a ji)]

where I(·) is an indicator function that is 1 if its condition is satisfied and 0 otherwise.
Successor states s′ are generated by enumerating all possible numbers of requests, Ni,

from 0 to N̄i, and, for each of these, enumerating all feasible values for the Mi j. The transition
probability Pr(s,a,s′) for each such s′ is determined by the probability mass functions of the
random variables Ni and Mi. Let ni and mi be the particular values of Ni and Mi that yield
the successor state s′. The random variables are all mutually independent, so

Pr(s,a,s′) = ∏
i∈S

f (ni)∏
i∈S

g(mi)

where

f (ni) =

{
Pr(Ni = ni), ni < N̄i

Pr(Ni ≥ ni), ni = N̄i

are the Poisson probabilities and

g(mi) =
Vi!

∏ j∈S mi j!
∏
j∈S

(
di j

diσ

)mi j

is the probability mass function for the multinomial distribution.
Finally, the reward, R(s), associated with each state is chosen to be the negative sum

of the queue lengths at all stations. If a passenger is left waiting for several time steps, the
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accumulated negative reward is the passenger’s waiting time. It is also possible to penalise
empty vehicle movements by defining rewards R(s,a) that depend on the action, but here
we will focus only on waiting times.

Now that the MDP is fully specified, small instances can be solved using policy iteration
(Puterman 2005), which computes a value, V (s), and an associated action, π(s) for each
state. The values are initialised to 0 for all states. The algorithm then proceeds in two steps.
The first step is to find a policy that is greedy with respect to the current value function,
namely

π(s) = argmax
a

∑
s′

Pr(s,a,s′)
(
R(s)+ γV (s′)

)
(23)

where γ ∈ (0,1) is a discount factor that reduces the value of rewards received far in the
future and is required to ensure convergence. The second step is to refine the value function
estimates for this policy, according to

V (s) = ∑
s′

Pr(s,π(s),s′)
(
R(s)+ γV (s′)

)
. (24)

That is, the value of state s is set to the expected value of the immediate reward, R(s), plus
the discounted expected value of its successor states, assuming that we follow the current
policy. Equations (24) are linear, so they can be solved explicitly for moderately large state
spaces, or an iterative scheme can be used for larger state spaces. We then repeat the first
step to find a new greedy policy with respect the refined value function. Because the rewards
are bounded (in [−qmaxnS,0]) and the state and action spaces are finite, equations (23) and
(24) are guaranteed to converge to an optimal policy (Puterman 2005).

7 Results

This section compares the waiting times predicted by the three methods developed in this
paper on the Heathrow Pod example from Fig. 3. To indicate what is achievable in prac-
tice, waiting times obtained from the ‘Sampling and Voting’ (SV) heuristic of Lees-Miller
and Wilson (2011) are also given. SV is a practical heuristic for the EVR problem that
moves empty vehicles proactively. It is based on ideas from the Dynamic Vehicle Routing
Problem (DVRP) literature. At each decision point, SV generates an ensemble of possible
sequences of future requests from the demand matrix. Each of these sequences, together
with the current state of the system, defines an instance of the static EVR problem (Sect. 5).
Each instance is solved approximately using the SNN heuristic, and common features of the
solutions are identified and implemented using a voting system; the idea is that if a particular
empty vehicle trip occurs frequently in the ensemble, it is probably a good trip to make in
the actual system. Here SV generates an ensemble of ten sequences, each containing up to
fifty requests (nE = 10 and nR = 50, in the notation of that paper).

The small size of the example network used here is due to limited scalability of the
dynamic programming method currently used to solve the MDPs. Table 1 shows the number
of states used to model the system for various fleet sizes and maximum queue lengths;
dynamic programming quickly becomes infeasible beyond about six vehicles, even when
qmax = 1. However, the Heathrow Pod system is sufficient to illustrate one of the main issues
in proactive empty vehicle redistribution: when there is demand from both Business Parking
(BP) stations to T5, the system has to choose which BP station to send an empty vehicle
to, and it is penalised if it chooses the wrong one, because it takes one time step for the
vehicle to move to the correct station. The SNN and M/G/s methods have been evaluated
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nK

qmax 1 2 3 4 5

1 60 135 240 375 540
2 480 1,080 1,920 3,000 4,320
3 2,720 6,120 10,880 17,000 24,480
4 12,240 27,540 48,960 76,500
5 46,512 104,652 186,048
6 155,040

Table 1 Size of the MDP state space with varying fleet size, nK , and maximum queue length, qmax. Here
tmax
i = 5 time steps for all stations, and the demand is tidal from both BP stations to T5.

previously on larger systems with tens of stations and hundreds of vehicles (Lees-Miller and
Wilson 2011; Lees-Miller 2011).

To evaluate an MDP policy fairly, it is necessary to evaluate it without an arbitrary limit
on the queue lengths (that is, with qmax = ∞). It is also helpful to use smaller time steps,
because waiting times less than one time step cannot be known exactly. The evaluation here
is therefore based on using the policy computed via dynamic programming to control a
simulation of the MDP model; this simulation does not require the whole state space or the
transition probabilities to be explicitly represented, so there is no requirement that the state
space be small (or finite). However, it is necessary to project from the simulated state space
into the state space for which the policy is defined. This projection involves three steps.

1. Truncate the queues from the simulation at qmax.
2. Round the ‘times until arrival’ from the simulation up to the next integer multiple of the

MDP time step and truncate at tmax
i . Here the simulation uses one second time steps,

whereas the MDP model uses one minute time steps.
3. If the queue for station i was truncated, the action recommended by the policy may

not be valid, because more idle vehicles may be used by queued requests, which leaves
fewer vehicles available for empty trips. The approach taken here is to zero the row i of
the action matrix, A, so that no empty vehicle trips will be started from station i.

Fig. 4 shows the mean waiting times obtained by the four methods on the Heathrow
Pod system for up to three vehicles. Three demand distributions are considered; in all three,
all requests are from BP to T5, but they differ in the split between the two BP stations,
BPA and BPB. For each split, the total demand is scaled to produce a family of demands
with the same spatial distribution but different intensities (Sect. 3). For example, when there
are three vehicles, intensity 1 corresponds to 18 requests per hour (larger capacities clearly
require more vehicles). In this and the other figures, the mean waiting time reported for
each intensity is taken over five runs of 0.5 million requests each for the M/G/s and SNN
methods and five runs of 0.1 million requests each for the MDP and SV methods.

Panels 4(a, d, and g) show the case where all requests are from BPB to T5. Empty
vehicle redistribution is trivial in this case, because the optimal policy is clearly to send all
idle vehicles from T5 to BPB, and all four methods give the same waiting times.

Panels 4(c, f, and i) show the case where the demand is split evenly between BPA and
BPB. In this case, the M/G/s and SNN methods agree, but the MDP and SV methods
produce longer waiting times. For example, for a single vehicle (panel (c)) at intensity 0.1,
M/G/s and SNN predict a mean waiting time of 33s, but SV and MDP give 65s. The gap
of approximately 30s reflects the fact that the optimal policy, if one does not know which
BP station the next request will come from, is to send the vehicle to one of the stations
arbitrarily, say BPB, because the next request is equally likely to be from either one. Half of
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the time, the next request will be from BPB, and that request will have zero waiting time;
but, the other half of the time, the next request will be from BPA, and that request will have
a waiting time of 60s. The expected waiting time penalty for this uncertainty in where the
next request will come from is therefore 30s, in this case. When there are multiple vehicles,
this penalty is reduced, as indicated by the MDP results in panels (f) and (i), which show a
smaller gap. Waiting times for SV are significantly higher than for the optimal MDP policy
when nK = 2 or 3, but the gap for SV is smaller for larger fleet sizes.

Fig. 5 shows the effect of increasing fleet size on the waiting times given by the optimal
MDP policy. The shape of the waiting time vs. intensity curve changes significantly as the
fleet size increases. It becomes flatter at low intensities, and then it increases more sharply
as it approaches maximum theoretical capacity, at intensity one. For example, when demand
is split evenly between BPA and BPB (panel (c)), the mean waiting time at intensity 0.6 is
200s with two vehicles but 51s with five vehicles. One explanation for this is that as the
fleet size increases, the system becomes more like an ‘insensitive’ M/G/∞ queuing system
(Adan and Resing 2002), in which there are an infinite number of servers, and customer
waiting times are zero for all demand intensities less than one.

Fig. 6 shows the results from the M/G/s and SV methods for fleet sizes up to twenty
vehicles, for which it is not currently feasible to find an optimal MDP policy. The trend
observed in Fig. 5 toward flatter waiting time vs intensity curves continues. For example,
when nK = 20 the mean waiting time achieved at intensity 0.6 by SV is roughly 6s, compared
with 75s for nK = 5. It is also notable that the gap between the results actually achieved by
SV and those predicted by the M/G/s method decreases as the fleet size increases. These
effects suggest an economy of scale in providing low passenger waiting times in PRT and
taxi systems: as the fleet size increases, low passenger waiting times can be achieved even
when the system is operating at high utilisation.

8 Conclusions

Three lower bounds were developed, one from an M/G/s queuing model, one based on
approximately solving a static optimisation problem with a heuristic called SNN, and one
using a formal Markov Decision Process (MDP) model. An evaluation of these bounds
shows that the M/G/s accurately predicts the average waiting times produced by the SNN
heuristic, which are in this case optimal. The optimal MDP policy, which explicitly considers
the inherent uncertainty about future requests, gives longer mean waiting times than the
M/G/s and SNN bounds, particularly when the fleet size is small.

For larger fleet sizes, the gap between waiting times achievable using only statistical
information and those achievable with perfect information is reduced. Larger fleet sizes also
allow the system to operate at higher intensity (higher utilisation) while still providing low
passenger waiting times, other things being equal. This result suggests important economies
of scale.

There is much scope for future work. The cost of empty vehicle movement was not in-
cluded; the MDP model is amenable to this, and the SNN heuristic could be modified to
include travel costs. Travel time variability was not considered. Uncertain travel times can
be easily incorporated into the MDP model, but, particularly in a PRT system, the empty
vehicle redistribution policy affects congestion on the network, which in turn affects travel
times; accurately representing this appears to require a more detailed model that does not
discard the network topology, as we did here by representing the network only by its quick-
est path trip times. A promising line of work is the application of approximate dynamic
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Fig. 4 Mean passenger waiting times obtained by the four methods. All four methods agree in the trivial
case, when the demand is from one origin (a, d, g). The M/G/s and SNN results agree for all cases. The gap
between the optimal MDP policy and the M/G/s and SNN bounds in (c) is due to the fact that only statistical
information is available about future requests; this gap decreases as the number of vehicles increases (f, i).
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programming methods to the MDP model developed here; this has the potential to produce
effective algorithms for the EVR problem that are both practical and principled.
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