
Final Report

YuBin Ng Robert Zhou YunLan Tang Siqi Wei

June 11, 2014

1 Introduction

Our aim is to implement an ios game that involves database and web server
back-end and a graphical user interface as a front-end, which is optimised for
iphone. The game took inspiration from el clasico board game, Monopoly but
takes place in the London underground. It is played between friends by visiting
tube stations in real life. Who ever visited the station the most is the owner
of the station and others who visited the station will have to pay the owner a
certain amount of in-game money.

To play the game, the player simply create a game room, invite friends into
the game and he will be able to see all the stations and players’ information.
The player will be able to enter at a station according to it’s GPS location, and
exist at a station. The server will calculate its route and process the transactions
accordingly.

1.1 Feature List - Requirement

For our product to be have minimal requires functionality, it must:

1. Players must join the game by downloading the app and authorizing it
with facebook.

2. Be able to store information in database, i.e. login and register

3. Be able to store the information about each game rooms created by users,
i.e. players information, stations informations

4. Be able to update the information on server according to user input, i.e.
when a user make a move, the server must be able to process the move,
and all other client must have the latest game information.

5. Use one section of the Piccadilly line as the game map

6. Each visit to the station pay the owner 1 pound

7. Be able to exchange owner correctly, i.e. when the player has the most
visit count of a station, it must become the owner

1



1.2 Feature List - Extra Feature

After the basic functionalities have been correctly implemented, we aim to
achieve the following extra features to make the game more interesting

Completed by the report deadline:

1. Be able to see the profile picture of other players

2. Be able to logout from the game

3. Be able to let user exit a game room

4. Be able to invite friends who did not register with the game to play

5. Be able to have a variable payment at each station, which can be achieved
by various mechanism

6. Be able to have quests, which the player will be rewarded if completed

7. Be able to have random events during each round, and the effect can be
either negative or positive, i.e. increase/decrease of amount of money

8. Have a map view for user so that it can see the tube line

9. Be able to see information about other player in the game room

10. Have different game mode which the player can choose when creating a
room

To be Completed in the future:

1. More choice of tube lines and stations

2. More choice of cities to play

3. To play with friends without a facebook account

4. Mini games to play during the tube journey to get rewards

5. Apple game center feature

6. Achievements

2 Project Management

2.1 Group Structure

We have divided up the work according to each group member’s strength.
Robert and YunLan are in charge of user interface (front-end) and graphic
design. While Siqi Wei and YuBin Ng are in charge of server-side programming
and database (back-end). We were all involved in game logic planning, design
and implementation of features. We have used ’git’ to update our files in the
repository, and shared documents in ’google docs’ for communication between

2



members. We have broken down the whole program into small individual com-
ponents and features and implement them step by step. Regular meetings were
held in the lab to keep up with each other and discuss any issues or problems.

At the later stage of the project, Robert and Ken started to work together to
integrate the front-end interface and back-end database, they worked together
by defining a set of API calls that the front end can use to retrieve and send
data to the server, and how each API should be implemented. At the same
time, Yubin worked on an API to deal with GPS location and Yunlan worked
on redesigning the UI of the game to make it more user friendly.

2.2 Implementation Language and Technology

Since we have evaluated the strength of each individual member, this has greatly
influenced our implementation languages. We have chosen to work on languages
we are comfortable with so that we can work smoothly and quickly on developing
the game instead of spending too much time learning the language.

2.2.1 Objective-C

On the client side, we are using objective-C, this is the native language sup-
ported by the iOS platform with extensive online documentation and APIs,
which makes the development process easier. The app will be more stable too.

2.2.2 PHP and PostgreSql

On the server side, server interface was implemented with PHP as it is free,
open source and can be easily installed on all servers. It is widely used and has
extensive documentations and supports online. PHP is a powerful web program-
ming language that is being employed by most big websites on the internet such
as Facebook and Twitter. PHP is easy to learn and it provides many built-in
functions to achieve many things that a programmer would need. Furthermore,
it is a language that is supported by all browsers and PHP interpreter can be
installed easily on the server. Apart from PHP, we will incorporate the use of
PostgreSQL to act as the back end database.

2.2.3 Heroku

Our group has chosen to use our own web server (Heroku) to host the game. This
is because the college server does not have some server components installed.
Heroku has a lot of support online and provides a lot of scalability in later stage
of the project.

2.3 Design Processes

We seperate responsibilities across every member of the group. Everyone will
be assigned a specific task. They will then come out with a draft for group
discussion. In our regular meetings, we will give feedbacks and suggestions.
We will then implement it individually after getting the group consent to avoid
implementation conflicts with other people’s work. For example, we make sure
we agree on the return type of a particular function. After implementation, we
will test each part individually before integrating it with the master branch.

3



2.4 Back-up systems

We mainly used ’git’ version control system along with Heroku to back-up our
project. Since it allowed us to keep track of previous working versions of the
project, and prevented overwriting modified files when more than one person
were updating them. We were able to back up data automatically as well as be-
ing sure that the changes each member has made will be seen by other members.
Git also allow each user of the group repository to have a separate repository
of his own, so that each member can have a copy of the project available on
their directory (rather than relying solely on the group directory). Heroku is a
reliable service so that our back-up will be safe on their server.

2.5 Testing

We have tested the game incrementally throughout the implementation phase.
We started with setting up the database and user data management (e.g. sign-
up, log-in), and tested whether all the data are dealt with correctly. Once the
system and the basic frame of GUI are tested, we started to add one feature
at a time. We made sure that each component we added worked as intended
before proceeding with the next feature, so that we could always go back to
the previous version if the implementation of the current feature was incom-
plete. This way of development also allowed us to concentrate on one feature
at a time, and ensure loose coupling between the files (less dependency) while
maintaining high cohesion within each file (achieving a common goal). This
is a recommended design practices we have learnt from Software Engineering
course. Apart from testing the implementation, we also tested the game flow
and balance between users by putting ourselves in the players’ position dur-
ing the implementation phase. By actually playing the game and trying out
implemented features ourselves, we were able to adjust the figures accordingly.

3 Program Description and Implementation

The name of our game is Metropoly. We have made use of all tube stations in
London as our theme to make our game more engaging.

3.1 Design Patterns

We have employed various design pattern to aid out development throughout
the project.

• MVC pattern, this was used throughout the development of the front-end
iOS application, all data was stored using our model, i.e. GameRoom and
GameStation, and the controller will receive interactions and send them
to the model and make sure the view will display the latest correct data.

• Adaptor/Facade, this was used in the LocationUtil class, we need the
functionality to know what are the closest stations to the device. The iOS
SDK provided the CLLocationManeger class which has too many func-
tionalities that we don’t actually need, so I have created a LocationUtil,
which hide the complexity of CLLocationManager and at the same time
provide extra functionality which can give us an array of nearby Stations

4



• Facade-NetworkUtil For NetworkUtil class, the inner functionality of it is
quite complicated as to initialise and to send synchronised request, how-
ever, with a facade pattern we hide those complex interactions, and there-
fore make the interface more clean.

• Factory-GameRoom When getting all the game rooms belong to a player,
and when a player is creating a new room, we used a factory patter so
that the user do not have to worry about how the GameRoom object was
constructed, especially when retrieving all the rooms for a player, it will
involves a huge complexity.

3.2 Design Practices

The front-end was implemented using the View-Model-Controller pattern, it
was enforces by the iOS SDK and create a good separation of implementation,
and allow the application to be easily modified and extend during the course of
development. In the Front end, each window in the game are a view, i.e. The
StationTableView, it is control by the StationTableViewController class, which
will respond to user interaction, i.e. if the user tab on the ”enter” button, it
will display a new view to let the users see the available nearbt stations, and
all the data/model was implemented by the GameRoom and GameStation class
which is in charge of providing data and retrieve and send data to the server
when necessary.

There is also a clear separation of front-end and back-end, all of the commu-
nication was implemented using the NetWorkUtil class, and data class such as
the GameRoom will use NetWorkUtil to retrieve data, and the controller will
only talk to the GameRoom class for game information, so each layer has a clear
separated responsibility which is essential to minimise error during development.

In order to pass data, we have to establish a common data structure. We
have chosen to use JavaScript Object Notation (JSON) which is a text-based
open standard for exchanging and storing data. We can send a request to a
PHP file and retrieve back data in JSON format. Likewise, Both Objective-
c and PHP can receive and parse data in JSON format using built-in library
functions provided, which makes communication very easy and efficient.

A good database structure goes a long way in supporting huge web project.
We have written database schemas that are capable of supporting large number
of players for our game and game information is divided and stored in different
tables and not all store in a single table. Lastly, we also understand how we
should distribute the load between client and the server. Calculations and data
manipulations that can be done on the client’s machine will be implemented
using Javascript while those that can only be done on the server will use PHP.

5



3.3 Gameplay

The following section will include some screens shots to demonstrate how the
game works, many of the interface are created during implementation stage,
and they will be redesign and polished before the presentation.

The game is a native iphone app. The first page in the app is the facebook
log in page. Once users register on the game by signing up, they enter the list
of Game Room. The ’Game Room’ page contains the list of stations. Players
are to check in and check out whichever tube station they are nearby to.

3.4 Interface

6



Figure 1: Log in Page Figure 2: Game Room List View
When a user open the app, the first thing they see is the simplistic log in page

with a facebook log in button. The log in process is taken care by facebook
API. Upon logging in, the player will see the list of game rooms he has joined.

Figure 3: Create Room VIew Figure 4

Figure 5: Select Friends View
If the user wants to create a new room, he can do so by clicking the ”+”
button on figure 2. The user can type in the room name and invite their

facebook friends to join the room.

7



Figure 6: Station Map View Figure 7: Station List View
When user enter the room, he will see a tube map view of his nearest station.
If he wish to enter the station, he can tap on the green button. a selection of
nearby stations will pop up. It is the same for exiting a station, other than
having a red button instead.

Figure 8: Room Table View Figure 9: Player Information View
The user can choose to see more information by selecting a table view (figure
8). Entering and exiting process will still be the same. In both view, the user
can enter the player information view to see how other players in the room are
performing.

8



3.5 Database and server

This game that we are developing rely heavy on the database. Therefore,
database structure has to be designed with care. We store almost all player’s
information on the database.

4 Acknowledgements and Legal Issues

5 Conclusion

5.1 What we have done

We have successfully produced a simple multiplayer game using various web-
programming languages and systems. Most of the targets we have specified were
accomplished, although some features had to be simplified. We have managed
to go through the entire process of a game development project from designing
contents to implementation within the deadline. We have thought through
the user interface design to make sure it is convenient for the players to use,
and is appealing at the same time. We kept improving the design during the
implementation and testing stage by playing the game and figuring out the
aspects that could be irritating for the users or that could be improved to
enhance user experience. As mentioned in the ”Group structure” section, we
have organised our group so that the work flow would be as efficient as possible.
We communicated with each other continually to notify one another of the things
we require from their part, and to discuss some considerations or issues that may
arise during the development. We gained a valuable experience of working in a
team, understanding weaknesses and strengths of each other, sharing opinions
and accepting others’ views (This assignment was different from other group
projects that we have done so far in the sense that we were supposed to design
what we need to do from the scratch. This allowed us to discuss more freely
about our views and thoughts, and come to a conclusion with the gathered
opinions). This has greatly opened up our imagination and we were able to
think creatively without restriction. We are not only working on the project to
get marks but we work on it because the game is fun to design and we have a
passion to create the best game.

5.2 What we have not done

Had we given more time for the project, we would have considered more fea-
tures and different style of gameplay. There are many things that we have
come up with, but decided not to include in the final game due to the short
implementation time given. These details would certainly improve the game
and user experience, so if we were given enough time, we would have considered
implementing those. Also, we could have tried to implement a web version or
android version. Currently, the website for the game is developed and optimised
on iphone, and we did not consider making it compatible with others . We could
have gone through a more thorough testing on different platforms, as well as
providing a way to adjust the size of the game interface for the machines with
different screens.

9



5.3 What we have learnt

We have learnt how our knowledge in web-programming and server program-
ming could be integrated together to form a working game that involves inter-
action between users. It was a great opportunity to learn more advanced use of
the programming languages and to combine them with database manipulation.
We have also learnt how big enterprise application design their database and
adopt the same practice from them. This skills and knowledge is not easy to
learn from classroom or lectures. Furthermore, this skills were picked up while
we work on our project and with a passion to accomplish a great game, we were
able to learn at a much quicker pace. In terms of managing the project, we have
learnt how to time-frame the assignment appropriately so that we have enough
time for each step of the development and deliver what we have initially set out
to achieve by the deadline.

5.4 What we would do differently in the future

Using PHP and progreSQL seemed reasonable considering the short period of
time assigned, and the features the chosen languages provide. We wanted to
spend time on developing features rather than on learning too many new things,
so we chose the ones that we were more familiar with instead of mysql. However,
it would have been interesting to explore what other possibilities there are, and
try out something completely new to see which one we would prefer if we were
to start another similar development project.

10


