Maze Solving by an
Autonomous Robot

Discovering the real-time systems

Project Report

Quentin CHATELAIS

Horatiu VULTUR
Emmanouil KANELLIS

Aalborg University
Electronics and IT

Copyright (©) Aalborg University 2014

Here you can write something about which tools and software you have used for typesetting
the document, running simulations and creating figures. If you do not know what to write,
either leave this page blank or have a look at the colophon in some of your books.

Electronics and IT
Aalborg University
http://www.aau.dk

AALBORG UNIVERSITY
STUDENT REPORT

Title: Abstract:
Maze Solving by an Autonomous Robot

\Here is the abstract

Theme:
Embedded Systems

Project Period:
Fall Semester 2010

Project Group:
ESS7

Participant(s):
Quentin CHATELAIS

Horatiu VULTUR
Emmanouil KANELLIS

Supervisor(s):
ARNE SKOU

Copies: 1
Page Numbers: 21

Date of Completion:
October 28, 2014

The content of this report is freely available, but publication (with reference) may only be pursued

due to agreement with the author.

http://www.aau.dk

Contents

Preface vi
1 Introduction 1
1.1 Context o o 1
1.1.1 Localization o 1

1.1.2 Mapping e 2

1.1.3 Path planning o 2

1.2 The project L 3

I Project specifications 4
2 Maze solving : problem definition 5
3 Working environment 8
3.1 The Legorobot 8
3.2 Themaze i 8
3.3 NxtOsekand C e 8

4 Group Work 9
4.1 A repository on Github oL 9

II Problem Analysis 10
5 The robot behaviour through the maze 11
6 A real time system 12
6.1 Definition of tasks oL o 12
6.2 Scheduling 12

7 Response time analysis 13
7.1 Measurement time 13
7.2 Tasks Duration 13

iii

Contents

8 Needed algorithms
8.1 Localization
8.2 Mapping
8.3 Movement
8.4 Pathplanning L

IIT Implementation
9 Different modules
10 Shared Variables

11 Tasks Implementation
11.1 Basic tasks e
11.2 Localization
11.3 Mapping o v v e e e e e
11.4 Movement
11.5 Main Task e

IV Conclusion
Bibliography

A Appendix A name

iv

14
14
14
14
14

15

16

17

18
18
18
18
18
18

19

21

22

Todo list

Preface

This document is the report concerning the project done in the fall semester 2014
by our group. The group was composed of three international students who studied
Embedded Software Systems on the 7Tth semester at Aalborg University.

Aalborg University, October 28, 2014

Quentin CHATELAIS Horatiu VULTUR
<qchatel4@student.aau.dk> <username2@student.aau.dk>

Emmanouil KANELLIS

<username3@student.aau.dk>

vi

Chapter 1

Introduction

1.1 Context

The rapid growth in the technology in our times is greater than ever. More and
more autonomous robotic devices are infiltrated in the lives of people making their
easier. Great amounts of money are spent annually on the research of building smart
robotic vehicles. In many cases, autonomous robots can be the best option for specific
missions. Conservative ways of rescuing survivors are time consuming and harmful
for the survivors. Hence unmanned autonomous robotic vehicles which can enter the
collapsed builds searching for survivors maybe a solution of finding survivors faster
and safer. Being equipped with the necessary sensory devices unmanned autonomous
robotic vehicles can scan the environment sending precious information to the rescue
teams about the location of survivors. In addition, there are also places where use
of robots is the only way to achieve a work. Space exhibitions, nuclear plants,
chemical factories, or any environment unreachable for humans could be explored by
a autonomous robots. So, independent mapping and localization for a robot became
one of the main goals in robotics technology. This is a complex problem, and is not
totally solved today. The principal difficulties are the accuracy of measurements,
and the real-time processing, correlated with minimum processing power, due to
non-infinite capabilities in most of the embedded systems. The whole above problem
can be separated in three subproblems: the localization and the mapping, known as
SLAM!, and the path planning.

1.1.1 Localization

Localization is the main problem for finding a path. The robot has to know the
answer of the question : “Where I am?” because from there he can find the path to
new position. The localization algorithms depends a lot of the environment in which
robots are found and the characteristics of the robot. If the robot is indoors it has
to use a different algorithm like it was outside. There are different algorithms that

!Simultaneous Localization And Mapping

1.1. Context 2

can be used for the localization like dead reckoning, least mean squares or can be
used modern technology like GPS. This problem is in tight relation with mapping
problem. These problems can be categories in three ways: where the map and
location are known, where the map is known but the location is unknown and the
hardest category it would be where the map and the location are unknown. In every
algorithm used to localize the current position of the robot there would be some
errors in the measurements, that is why it is indicated to use multiple algorithms to
detect more precisely the current position.

1.1.2 Mapping

Mapping a environment is a complex problem, which have a lot of solutions, each
with its advantages and drawbacks, and dealing between the accuracy of the map
and the computing power available on the robot. To be more precise, this problem
of mapping has two components : how to save the map into memory (map repre-
sentation), and how to recognize it while moving or not, with which kind of sensors
(map learning). So one of the main troubles with that is there is often a few memory
and computational power, but the more accurate algorithms are of course the most
greedy in CPU and memory. The difficulty is to balanced all this parameters. That
can be achieve for example in :

e not coding the best algorithm ever, but accurate enough to map correctly ;

e giving the robot some informations about the environment in order to simplify
the problem, so it’s not a full autonomous robot anymore, but mapping is easier
(for example, if robot know it’ll map an environment only made of orthogonal
plans, it’s easier for both map representation and map) ;

e limiting the accuracy of registered informations where it’s not useful to be
precise, and increase resolution on critical points.

Also, the system has to be fault-tolerant, because sensors can be wrong. Combine
several sensors and compare their values is a way of manage that. Finally, mapping
is also extremely dependant of localization, so each mistake with localization make
the mapping goes wrong, and size of errors may grow up with the larger of the map.

1.1.3 Path planning

Path planning or motion planning is the navigation process of an autonomous robot
in a specific area in which are existing numerous obstacles that needs to be avoided.
In our case the autonomous robot must find the finish position with the fastest or
shortest possible way. This process can be performed by various algorithms such
as Grid-Based Search, Interval-Based Search, Geometric Algorithms, Potential field,
Sampling-Based Algorithm.

1.2. The project 3

1.2 The project

For this project, the choice is to simulate the problem that has just been presented
by putting an autonomous robot with a maze as external environment.

Part 1

Project specifications

Chapter 2

Maze solving : problem
definition

The basic definition of the problem is the following : "An autonomous robot has to
solve a maze in which it has been placed". The robot is put at a random position in
the maze, and have to find its way to another position known as the end, and recog-
nizable by the robot. Several parameters have to be specified before the beginning,
in order to define the project as precisely as possible. This parameters (or rules) are
described below :

1. The maze is a large rectangle, where there are severals walls.

(a) There are walls all around the maze (it is closed) ;

(b) The walls are straights ;

()

(d) The maze can be divided in squares (also called cells) of the same dimen-
sions, which do not contain inner walls. In other words, walls have to be

positioned only on the sides of this squares.

the walls are perpendicular to each other ;

2. The robot is independant.

(a) The robot initially knows nothing about the shape of the maze ;

(b) The robot can know the dimensions of the maze ;

(¢) The robot can assume that he moves through a maze with the above
defined. parameters.

3. The robot have to reach several goals :

(a) Find the end position ;

(b) Find the shortest path between the cell where it started and the end
position.

The definition of this parameters was done before anithing else, and is the starting
point of the analysis of the problem. This rules which are the skeleton of the project,
and without them it is impossible to go forward. This rules has been defined clearly
for everyone to agree on important points of the project, like the things the robot
should do, and also contains some restrictions compare to the general problem of
the behaviour of an autonomous robot in an unknown environment, as introduced at
the beginning of this document. the reason that led to these restrictions is that it is
better to have first a closest goal to reach, instead of directly beginning with a too
hard and large problem. It is small step by small step that a project can be managed
without run out of steam or getting lost. Althrough, this project was managed step
by step, and these steps was decided since the beginning.

The first step consists in deciding the way the project will be managed, and what
is the best environment to work on it together. The main questions are : what
kind of robot will be used ? With wich language will the sofware be written 7
How the work will be split between the group members ?

The second step is the theorical analysis. In this part, the main activity is to
read documents on the work which already exists on the subject, find the right
algorithms, and then go deeply in their understanding. This step could have
be the first one, but the decision was made to first look at the environment
and the tools we will use, in order to have more precise ideas of what we have
to read, and be able to contrust a sketch of coding in our minds while reading
all the papers. Furthermore, the first step helped to knows which part of the
problem each member of the group is the most interested in, and then better
separate the research work.

The third step is the software analysis, a step to decide how the software em-
bedded in the robot will be organized. Here it is an embedded system, so
tasks have to be defined with their general behaviour, and the way they will
intercommunicate.

The fourth step is the implementation. First doing small tests on the hardware,
in order to be more confident with our working environement, the robot, its
sensors and acuators. Then it is finally time to write the first version of the
implementation with the algorithms and the organization defined in the previ-
ous steps. Tests has to be permormed oftenly independantly on the different
parts of the software, before to merge all the working parts to make a complete
program. It is a very critical step, because it is when all the previous decisions
are tested in real conditions, and sometimes things can not work as expected,
and some difficulties can be endure. So here the team work is more important
than ever, and it’s why regular meetings have to be schedule, to review the
work done, and decide together how to go through the difficulties. It is also
possible to go back to the previous steps and come back to the implementation
as much as needed.

The (optional) fifth step can be to generalize the problem, for example by using
a maze where walls are not all straights, or in a real room with several kinds
of objects (different sizes and shapes) as walls, or also by not specify the di-
mensions of the environment to map. In brief, this step can be done if all the
previous steps had been done and the deadline is not reach, and consists in
remove the restrictions one by one to have a more generic and smarter robot.

Chapter 3

Working environment

3.1 The Lego robot

At the beginning, the robot has two wheels and one sensor. This architecture can be
modified later in the project after several tests to better solve the maze. In order to
realize this project, we will use as main controller a NXT Micro Computer brick. This
brick will communicate with other devices from LEGO to map the environment and
to find the shortest path from the start point to end point. The other components
could be distance sensors to find where is the wall, the color sensor to detect if it
arrived in the right position which is the end, the motors to move the robot and to
rotate the distance sensor for a better understanding of the environment.

3.2 The maze
3.3 NxtOsek and C

After we decide on which components we use to create the robot we had also to decide
what software platforms we have to use. To program this device we will use nxtOSEK,
which is a Real-Time Operating System for Lego Mindstorms programmable NXT
controller. To edit the source code we can use the software gedit, which is default
installed in the Ubuntu operating system and as a compiler we use gnu-arm compiler.

Chapter 4

Group Work

How we worked in group, planned and manage meetings, and divided work in different
tasks.

4.1 A repository on Github

Part 11

Problem Analysis

10

Chapter 5

The robot behaviour through
the maze

11

Chapter 6

A real time system

6.1 Definition of tasks

6.2 Scheduling

12

Chapter 7

Response time analysis

7.1 Measurement time

7.2 Tasks Duration

13

Chapter 8

Needed algorithms

8.1 Localization
8.2 Mapping
8.3 Movement

8.4 Path planning

14

Part 111

Implementation

15

Chapter 9

Different modules for different
tasks

16

Chapter 10

Shared Variables

17

Chapter 11

Tasks Implementation

11.1 Basic tasks
11.2 Localization
11.3 Mapping
11.4 Movement

11.5 Main Task

18

Part IV

Conclusion

19

20

Examples of bibliography references : [Madsen, 2010], [Oetiker, 2010] and [Mit-
telbach, 2005].

Bibliography

Madsen, L. (2010). Introduktion til LaTeX. http://www.inf.au.dk/system/latex/
bog/.

Mittelbach, F. (2005). The LATEX companion. Addison-Wesley, 2. ed. edition.

Oetiker, T. (2010). The not so short a introduction to LaTeX2e. http://tobi.
oetiker.ch/lshort/lshort.pdf.

21

http://www.imf.au.dk/system/latex/bog/
http://www.imf.au.dk/system/latex/bog/
http://tobi.oetiker.ch/lshort/lshort.pdf
http://tobi.oetiker.ch/lshort/lshort.pdf

Appendix A

Appendix A name

Here is the first appendix

22

	Front page
	English title page
	Contents
	Preface
	1 Introduction
	1.1 Context
	1.1.1 Localization
	1.1.2 Mapping
	1.1.3 Path planning

	1.2 The project

	I Project specifications
	2 Maze solving : problem definition
	3 Working environment
	3.1 The Lego robot
	3.2 The maze
	3.3 NxtOsek and C

	4 Group Work
	4.1 A repository on Github

	II Problem Analysis
	5 The robot behaviour through the maze
	6 A real time system
	6.1 Definition of tasks
	6.2 Scheduling

	7 Response time analysis
	7.1 Measurement time
	7.2 Tasks Duration

	8 Needed algorithms
	8.1 Localization
	8.2 Mapping
	8.3 Movement
	8.4 Path planning

	III Implementation
	9 Different modules
	10 Shared Variables
	11 Tasks Implementation
	11.1 Basic tasks
	11.2 Localization
	11.3 Mapping
	11.4 Movement
	11.5 Main Task

	IV Conclusion
	Bibliography
	A Appendix A name

