
Final Year Project Report

Learning to Play Wolfenstein 3-D

Gearóid Mac Ghiolla Coinnig

A thesis submitted in part fulfilment of the degree of

BSc. (Hons.) in Computer Science

Supervisor: Prof. Arthur Cater

UCD School of Computer Science

University College Dublin

March 16, 2019

Project Specification

General Information:

The goal is to develop a program able to play some early stages of the first person shooter
video game ”Wolfenstein”, by learning to associate possible actions (moving in various ways,
shooting) with what is perceptible in the game at any moment. A technique that proved success-
ful in learning to play a Mario Bros level is to be applied to the new game. An existing open-source
reimplementation of Wolfenstein will need to be adapted to provide the learner with information
about what it perceives, where it is, how much ammunition it has, and how much time has elapsed.

The technique to be used for learning to play is a combination of neural network and ge-
netic programming. Input neurons correspond to the presence of visible or measurable features
(walls, enemies, power-ups, clock), and output neurons correspond to controller buttons (go
left/right/forward/back, turn left/right/upward/downward, jump, shoot). By starting with a
minimal network, adding random links from inputs to hidden nodes and onward to output nodes
or perhaps other hidden nodes, and randomly adding new hidden nodes, different behaviours are
obtained. By applying ideas of genetic algorithms, many individuals can be created and rated
in terms of how much progress they make before dying and how soon they die. Mutation of,
and crossover among, the more successful individuals of a generation leads over time to general
improvement and ultimately, it is hoped, a really excellent player.

This technique succeeded in a Mario Bros game level, using inter-neuron links that had simple
weights: excitatory or inhibitory. The Wolfenstein game has several similar characteristics, being
deterministic and possessing something that can be used as a measure of progress (in Mario, a
combination of distance from start and time taken was used but coins gathered were ignored).

Mandatory:

• Install the open-source reimplementation of Wolfenstein.

• Identify and implement code changes necessary to determine whether the hero has died,
and if so, at what time and distance from starting.

• Identify and implement code changes necessary to allow a program rather than a human to
control the character’s actions.

• Identify and implement code changes necessary to allow a program to detect what is visible
to the character at any moment in play.

• Design and implement a system for linking measurements of what can be detected in several
of the floors of the first stage of Wolfenstein to activation of the player controls, using a
small randomly generated system of neurons (nodes) and links that are either excitatory or
inhibitory. (Such a system is virtually certain to die quickly.) Only small numbers of links
in to or out from any node should be permitted at this stage, a maximum of six.

• Develop a way to combine parts of one random network with parts of another.

Page 1 of 40

Discretionary:

• Design and develop a metric for comparing the degree of success of two networks, in terms
of (large) distance travelled and (fast) time taken.

• Design and develop an evolutionary mechanism for taking a generation of several individual
networks, picking the best few, performing crossovers and occasional mutations (new hidden
nodes, wholly new links) in order to create a new generation of individuals.

• Apply this mechanism for at least 20 generations each consisting of at least 12 individuals.
Measure the performances of the best, worst and median individuals in each generation.

• Apply the entire system to a third of the levels in the first Stage of Wolfenstein.

Exceptional:

• Apply this mechanism to substantially more generations, or substantially larger generations,
or with more generous limits on in-degree and out-degree of nodes. Measure performance.

• Enrich the measure of performance, for example to reward the kills of enemies and the low
use of ammunition.

• Apply the entire system to half or more of the levels in the first Stage of Wolfenstein.

Page 2 of 40

Abstract

Wolfenstein3D is a first person shooter MS-DOS game that was released in 1992. The goal of
the video game is to escape Castle Wolfenstein, a Nazi prison. Its creators, ID Software, released
the source code for the game in 1995, meaning it is now possible to edit the source code for our
own purpose.

The aim of the Learning to Play Wolfenstein 3-D project is to replace a human player with a
computer that progressively learns to play Wolfenstein using two Machine Learning techniques,
Genetic Algorithms and Neural Networks. These algorithms are implemented according to an
algorithm called NeuroEvolution of Augmenting Topologies (NEAT) which is based on a
paper by Kenneth Stanley and Risto Miikkulainen written in 2002 [1].

Part of the NEAT algorithm is dedicated to describing how a genetic population ought to be
represented. A Genotype represents an individual from a genetic population. Each Genotype has
a list of Genes which describes connections between Neurons in what is known as a Phenotype or
Neural Network. In this document, Genotypes will be referred to as individuals and Phenotypes
will be referred to as an individual’s network. NEATDoop is the name given to the AI that
was created as a result of implementing the software for this project. NEATDoop contains
a population of individuals which will be used to learn to play Wolfenstein. Doop stands for
Developing Object-Oriented Program and is sometimes referred to in this document as the AI.

NEATDoop’s learning will be aided by a fitness function that measures the success of an individ-
ual’s network when it was used to play Wolfenstein, which is a requirement for any project of this
nature. By using previous individuals a new, hopefully better, individual will be generated who’s
network will then be used to play Wolfenstein. The end goal of this project is that NEATDoop
is a fully functioning AI that is capable of learning how to play some levels of the Wolfenstein
campaign.

Page 3 of 40

Acknowledgments

I wish to express my sincere gratitude to the various community forum pages that have aided me
in setting up such a strong foundation for my project. These include, but are not limited, to the
DoomWorld forums, DRD team forums, StackOverflow, Wolfenstein3D Dome and the Wolf3D
haven forums.

I would like to personally thank Iona Chera for providing me with information and feedback on
my initial project concepts. I would also like to thank him for outlining various ways in which I
could work with the source code for Wolfenstein.

I want to thank my fellow classmates Joe Duffin and James Keating for always finding the time
to help me with problems I have had with my project. Without their help I fear that this project
may not have been as complete as it is to date.

Finally I would like to thank my supervisor Prof. Arthur Cater. Over the past year he has
continually provided me with support and feedback on my project and I cannot thank him enough
for his time and patience.

Page 4 of 40

Table of Contents

1 Introduction . 7

1.1 Why This Project Was Chosen . 8

1.2 Specification Changes . 9

2 Background Research . 10

2.1 Game Selection . 10

2.2 NEAT Algorithm . 11

2.3 Wolfenstein 3-D Game Mechanics . 16

3 Project Approach . 18

3.1 Selecting the Source Port . 18

3.2 Understanding the Source Code . 18

3.3 Why NEAT? . 20

3.4 Examining Existing NEAT Implementations 21

4 Design Aspects . 22

4.1 Understanding the NEATDoop Neural Network 22

4.2 Wolfenstein and NEAT Interaction . 23

5 Detailed Design and Implementation 25

5.1 Giving NEATDoop Game Vision . 25

Page 5 of 40

5.2 Playing Wolfenstein with NEATDoop 26

5.3 Speeding Up Learning . 28

5.4 Attempt Termination . 28

5.5 Calculating Distances . 29

5.6 Aiding NEATDoop’s Learning . 30

5.7 Saving NEATDoop Attempts . 31

6 Testing/Evaluation . 34

6.1 Testing NEATDoop . 35

6.2 Evaluating NEATDoop . 35

7 Conclusions and Future Work . 38

7.1 Extending NEATDoop . 38

7.2 Final Conclusion . 39

Page 6 of 40

Chapter 1: Introduction

The inspiration for this project came from a YouTube video that was published over a year ago
by a content creator named Seth / SethBling. The algorithm that Seth used to implement his
AI was based on a paper called Evolving Neural Networks through Augmented Topologies. [1]
Seth’s video describes how his AI learns to play and complete a level of Super Mario World using
a combination of two Machine Learning techniques; Neural Networks and Genetic Algorithms.

Wolfenstein3D is a first person shooter MS-DOS game that was released in 1992. The goal of
the video game is to escape Castle Wolfenstein, a Nazi prison. Its creators, ID Software, released
the source code for the game in 1995, meaning it is now possible to edit the source code for one’s
own purpose.

The aim of the Learning to Play Wolfenstein project is to replace a human player with a
computer that progressively learns to play Wolfenstein using two Machine Learning techniques,
Genetic Algorithms and Neural Networks. These algorithms are implemented according to an
algorithm called NeuroEvolution of Augmenting Topologies (NEAT) which is based on a
paper by Kenneth Stanley and Risto Miikkulainen written in 2002 [1].

Part of the NEAT algorithm is dedicated to describing how a genetic population ought to be
represented. A Genotype represents an individual from a genetic population. Each Genotype has
a list of Genes which describes connections between Neurons in what is known as a Phenotype or
Neural Network. In this document, Genotypes will be referred to as individuals and Phenotypes
will be referred to as an individuals network. NEATDoop is the name given to the AI that learns
to play Wolfenstein and was created as a result of implementing the software for this project.
NEATDoop contains a population of individuals which will be used to learn to play Wolfenstein.
Doop stands for Developing Object-Oriented Program and is sometimes referred to in this
document as the AI.

NEATDoop’s learning will be aided by a fitness function that measures the success of an individ-
ual’s network when it was used to play Wolfenstein, which is a requirement for any project of this
nature. By using previous individuals a new, hopefully better, individual will be generated who’s
network will then be used to play Wolfenstein. The end goal of this project is that NEATDoop
is a fully functioning AI that is capable of learning how to play some levels of the Wolfenstein
campaign.

Super Mario World is a mostly linear game, but by no means simple in terms of gameplay. You
travel left and right on the screen to get to a particular point or objective on the map. There
are points in Super Mario World’s gameplay where the player needs to kill enemies, jump over
obstacles or go down tubes to get to other parts of the map. The plan for NEATDoop is to
extend the approach taken for Seth’s AI and to introduce its concepts to a more complex game.
Doing this will involve creating a more complex fitness function than was used for Seth’s AI to
better model the requirements of Wolfenstein.

This document details the approach taken in order to complete the Learning to Play Wolfenstein
project specifications. Each chapter of this document introduces several topics, each of which are
discussed in detail.

Chapter 2 will outline all the background research that was done for this project. Here, the process
of selecting the game for this project will be talked about. An in-depth overview of the NEAT
algorithm will be provided as well as definitions for Neural Networks and Genetic Algorithms in

Page 7 of 40

general, and finally Wolfenstein’s game mechanics will be briefly discussed.

Chapter 3 provides information on how the project was initially approached. This involved deciding
what language to use for this project by selecting from different language reimplementations
of the original Wolfenstein source code. Various important source files that were identified in
Wolfenstein’s source code will then be documented and other NEAT algorithm implementations
that were used to aid in programming NEATDoop will be explained. It will also argue why the
NEAT algorithm is well suited for this type of project.

Chapter 4 will explain how the NEATDoop’s Neural Network works and concludes with an expla-
nation of the interaction between the NEAT algorithm and the Wolfenstein source code.

Chapter 5 provides in-depth documentation and explanations for how core components of NEAT-
Doop were implemented. It describes how the NEATDoop’s surroundings are represented, how
it learns to play the game, attempts that were made to try and speed up gameplay and what
stopping conditions are used to stop networks from playing Wolfenstein when they do nothing
useful. It will also explain how distances are calculated for the project’s fitness function, what
the final fitness function is and finally shows how learnt networks are stored and reloaded so that
they can be replayed.

Chapter 6 is dedicated to testing and evaluations that were done for the Learning to Play
Wolfenstein project. It will provide an analysis of the fitness functions used over the course of
the project time frame, the testing that was done with NEATDoop and ends with an evaluation
of NEATDoop.

The last chapter, Chapter 7, will provide some future work that could be done with this project
and how certain components that were implemented might be changed. It will also provide a final
conclusion for the Learning to Play Wolfenstein project.

1.1 Why This Project Was Chosen

Using Neural Networks to aid learning in systems has been of interest for a long time although, in
practice, they have only recently become feasible (in the past twenty years or so) to use primarily
because of how much computational time they require. Modern advancements in technology have
made the use of Neural Networks to solve complex problems more and more possible.

At first, I thought that the best approach for developing an AI capable of playing a game would
be to implement a rule-based system where the AI reacts deterministically to its surroundings.
However, using an algorithm like NEAT allows an AI to learn this behaviour itself and is far more
interesting both to implement and to watch.

Having the opportunity to use machine learning techniques that have revolutionised problem
solving in the industry as well as being able to incorporate it into an area of computer science
that I am very fond of was particularly appealing and is the reason why I proposed this project.

Page 8 of 40

1.2 Specification Changes

Initially, part of this project’s specifications was to create an AI capable of completing dozens of
levels within the Wolfenstein campaign. Two parts of the initial specification have now changed
with the agreement of my project supervisor, to the below.

• Discretionary:
Old: Apply the entire system to all floors of the second stage of Wolfenstein
New: Apply the entire system to a third of the levels in the first Stage of Wolfenstein.

• Exceptional:
Old: Apply the entire system to some or all the floors of the second, and perhaps third,
stage of Wolfenstein
New: Apply the entire system to half or more of the levels in the first Stage of Wolfenstein.

The changes to the specifications were primarily due to the fact that it takes a considerable
amount of time for NEATDoop to learn how to play just parts of a level and so letting it complete
several levels was deemed impractical. As things stand, however, neither of the modified goals
have been achieved, since the learning time required is even greater than had been feared.

Page 9 of 40

Chapter 2: Background Research

This chapter will outline in detail the discoveries that were made whilst researching numerous
relevant topics of interest to the Learning to Play Wolfenstein project. The first item that will
be discussed will describe how the game for this project was selected; what caused Wolfenstein
to be chosen over previously considered open-source games, such as Doom and Duke Nukem.
However, the main topic of discussion in this chapter will be the NeuroEvolution of Augmenting
Topologies(NEAT) algorithm; what it is and why it will be of major importance to NEATDoop’s
ability to learn.

2.1 Game Selection

In order for an AI to be able to learn to play Wolfenstein it will need to be able to make decisions
based on what it can see at any point in time. This would not easily be done with a game whose
source code was not open source since information could not be read directly from the source
code to determine its surroundings.

The first open source game that was considered for this project was Duke Nukem 3D. It was
released early 1996 and was developed by 3D Realms. The game was discovered having read an
analysis of the game’s source code on a web-blog early into the specification for this project. [2]

The author of the web-blog recommended that I do not use Duke Nukem 3D due to its rotten
codebase. [3] From inspection of an open source reimplementation of the source code called
Chocolate Duke Nukem 3D the author’s recommendation seemed well founded. The source
code contains approximately 70,000 lines of code and is very, very sparingly documented. By
comparing the game.c source file from Duke Nukem 3D and the WL GAME.c source file from
Wolfenstein it is now very clear that not choosing Duke Nukem 3D was a solid decision. Both
of these source files implement logic that sets up levels, constructs in game text, displays player
health statistics and includes logic that is fundamental to the main game loop. WL GAME.c
from Wolfenstein’s source code contains approximately 1,600 lines of code whereas game.c from
Duke Nukem 3D’s source code alone roughly contains 11,000 lines of code with no substantial
documentation indicating how the source file works. [4][5]

The Original Doom was then considered as it was recommended by the author of the previously
mentioned web-blog. A software developer who created a reimplementation of the Doom source
port called AutoDoom recommended that Wolfenstein 3D be considered for this project as op-
posed to Doom due to the fact that Doom’s level design is a lot more complex than Wolfenstein’s.
This is evident from any gameplay showcasing the games. [6]

Doom allows for players to move in the vertical axis. This extra dimension that a player can
move in would have been a huge roadblock in NEATDoop’s ability to learn. Wolfenstein’s map
design is completely flat i.e. the player cannot move in the vertical axis. A worst case scenario
for NEATDoop playing Wolfenstein is that it gets stuck in a corner or runs in a circle. Not only
would this be a concern in Doom but there exists a probability that NEATDoop would get stuck
behind a staircase or similar. The fitness function for Doom would also have to take into account
the extra axis which would have resulted in an even more complex measure of fitness.

Page 10 of 40

As a result of the outlined problems, Wolfenstein was chosen for this project because the source
code is well documented. As well as this, the source code, whilst still containing approximately
45,000 lines of code, is easy to navigate and understand. The source code that was chosen is
actually not the original one that was written in C but a reimplementation written in C++ called
Wolf4SDL. [7] The main reason behind this choice was so any code written to interact with
the Wolfenstein source code could be object oriented. Further reasons will be discussed later in
Chapter 3.

2.2 NEAT Algorithm

NEAT stands for Neuro-Evolution of Augmenting Topologies and is based on an paper by
Kenneth Stanley and Risto Miikkulainen [1]. The paper demonstrates the ability for the NEAT al-
gorithm to solve problems in quicker succession than other types of topology evolving algorithms,
such as Topology and Weight Evolving Artificial Neural Networks (TWEANN) algorithms [8].
The NEAT algorithm consists of two very important Machine Learning techniques, Neural Net-
works and Genetic Algorithms.

2.2.1 NEAT Neural Networks

Neural Networks(NN) are a Machine Learning technique that roughly simulate the behaviour of a
brain. They consist of artificial Neurons that are connected using artificial Synapses. The synapses
in a NN typically have a weight associated with them that describes how strong a connection any
two Neurons have with each other. [9]

In traditional Neuro-evolution techniques, a topology is chosen before any experimentation begins.
This topology is normally maximally connected, meaning that every Neuron in the input layer is
connected to every Neuron in the output layer. If the topology has an intermediate layer, known
as a hidden layer, then the input layer is instead maximally connected to it, and it is then
maximally connected to the output layer. This network then receives inputs to be processed
which are propagated through the network starting from the input layer until, ultimately, reaching
the output layer where a result is produced.

This network is then modified by means of mutating the weights on the links of the network using
evolutionary techniques such as genetic algorithms. The goal of this type of neuro-evolution is
therefore to optimise the weight matrix associated with the network.

In order to determine what Neurons are active at any point during network analysis, an activa-
tion function is used. As stated in NEAT [1], a modified Sigmoidal transfer function is used,
ϕ(x) = 1

1+e−4.9x . This is not the standard Sigmoidal function used in traditional neuro-evolution
techniques due to its use of a coefficient. This coefficient causes activations to be close to linear
at the Sigmoid’s steepest ascent between -0.5 and 0.5 resulting in more possibilities for fine-tuning
at the extremes of the modified sigmoid function, since it does not plateau as fast as a standard
sigmoid.

The weights between Neurons are not the only aspect of a Neural Network that contribute to
their behaviour. The structure of a neural network also affects its functionality. The NEAT al-
gorithm is primarily focused on this aspect of neuroevolution. It extends and tries to improve

Page 11 of 40

Figure 2.1: Modified Sigmoidal activation function used for NEAT algorithm

on some popular techniques utilised by some TWEANNs. The two main ideas it introduces are
the Speciation of a population and using Innovation Numbers on network encodings so that
the historical origins of each network can be tracked. These concepts try to counter some of the
common issues with typical TWEANNs. [10]

NEAT Encoding

Typical neural networks consist of Neurons (nodes) connected using Synapses (links). NEAT
describes its networks using a type of direct encoding whereby each network is represented using
a series of Genes. Each Gene indicates two Neurons that are connected, whether or not the link
is enabled, a weight and an innovation number that is unique to each Gene. This innovation
number is used to calculate similarities between networks.

Figure 2.2: Shows a mapping from an individual (Genotype) to a network (Phenotype).

Fig 2.2 is taken directly from the NEAT paper [1] and indicates how an individual’s Genes map
to a network. Notice that the innovation numbers associated with each Gene in this network are
not increasing uniformly. This is an example where Genes would have been added to another
individual before the last Gene in this individual was added.

NEAT Speciation

Many problems arise when experimenting with networks that involve modifying the structure of
the network as well as the weights on links in order to produce better offspring. One such problem

Page 12 of 40

is that, in many cases, modifying a network causes an initial decrease in an individual’s fitness.
As a result, the topological innovation is very unlikely to make it through to the next generation
where it has the potential to be improved.

In order to counter the above problem, the NEAT algorithm uses Speciation on its population.
This is done by grouping individuals by their networks if they share similar enough genetic history.

Figure 2.3: Shows a comparison of the Genes in two different individuals.

The bottom portion of Figure 2.3 shows how comparing genetic history between two individuals
might work. The Genes that appear in both individuals are lined up. These Genes are referred
to as Matching Genes. Any Genes that do not match are considered to either be Disjoint or
Excess depending on whether the mismatch appears in the middle of the comparison or at the
end. Calculating Gene similarities between two individuals will be important when performing
crossovers, which will be discussed in the next section.

There are a number of implications of Speciation. Firstly, structural innovations have a better
chance of making it through to the next generation where they can be further improved. Secondly,
it reduces the chances of a single individual dominating the entire population.

Speciation is a concept that most TWEANNs do not employ, as indicated in the NEAT paper.
Innovative structures in TWEANNs tend to have more connections and as such take far longer to
improve than simpler ones. The result of this is that innovative structures in TWEANNs cannot
compete with simpler ones.

2.2.2 NEAT Genetic Algorithms

Genetic Algorithms(GA) are a set of rules that try to describe how simulated evolution might work
with an artificial population. The population consists of a set of individuals that are to be subject
to these rules of evolution. The individuals are evaluated and their relative success measured
according to some Fitness Function. Crossovers are then performed by combining aspects of
two parent individuals to create a new child individual. Individuals are then mutated by making
small random changes to them in order to add genetic diversity to the population. Depending
on the implementation, a number of individuals are then moved forward to the next generation
where the same rules are applied to the new, modified population. This process is repeated until
a terminal condition is met. In the case of this project the terminal condition will ultimately be
NEATDoop completing a level.

Page 13 of 40

The GA used for NEAT is a variation of these standard rules, since the population is speciated /
sub-divided the rules are altered slightly.

1. Initialisation: As was mentioned in Subsection 2.2.1, the population in the NEAT algo-
rithm is Speciated / sub-divided so that clusters of similar individuals are created. This is
how the population in NEAT is created. Each individual starts with a network that is min-
imally connected, meaning that there is no hidden layer initially; only an input and output
layer, which may have some connections as a mutation is applied to each initial network.

2. Evaluation: This step involves taking each network in the population and feeding it inputs
in order to produce some output. The fitness or success of the network is then calculated
according to some fitness function which is used as a measure for comparison between
networks.

As stated in NEAT [1], explicit fitness sharing is used between the individuals of a particular
niche. This value is assigned the fitness of the highest performing individual in that niche.
It does this so that no single niche or Species, as they are also called, can take over the
entire population even if all of its members are high performing.

3. Selection: Once all the individuals in the population have been evaluated, niches / species
reproduce by first eliminating the lowest performing individuals and then the entire popula-
tion is replaced by the offspring of the remaining individuals in each niche / species.

In the implementation for this project, only the best individual per species is actually brought
forward to the next generation. Since all individuals in a species are either equal in perfor-
mance or worse than the current best performer, removing the weak individuals creates a
higher chance that new ones generated will perform better than the current best.

4. Crossover: Crossover produces new offspring for the next generation by taking two parent
individuals from the same species and combining aspects of them to produce a child. The
parent individuals always come from the same species since the networks of each are similar
enough for this crossover to work properly.

If the networks were not similar then too many disjoint and excess Genes would be used in
the child causing the genetic history shared to become tainted.

5. Mutation: In order to introduce genetic diversity within the population, mutations are
performed on the population. Types of mutations include:

• NEAT topological modifications (Discussed in the next section)

• Enabling / disabling existing links in a network

• Modifying an individual’s mutation rates

6. Repeat process until terminal condition met

2.2.3 NEAT Topological Mutations

NEAT specifies two types of topological / network mutations [1], Node insertion mutations and
Link insertion mutations. Both of these mutations add new connection Genes to an individual
and each new Gene is assigned a new, unique Innovation Number.

• Link insertion mutation: In a link insertion mutation a new connection Gene is added
to the individual, specifying an in-neuron and out-neuron. Both of these neurons are chosen
randomly from the individual’s pool of existing neurons. If a link already exists between
these two neurons then no new link is added. Fig 2.4 shows that the neurons selected were
3 and 5 in this case.

Page 14 of 40

Figure 2.4: Shows an individual’s network before and after NEAT Link and Node insertion
mutations.

• Node insertion mutation: A node insertion mutation involves randomly selecting a
Gene from an individual. This Gene is then set to be disabled, meaning there is no longer a
direct connection between the Gene’s in-neuron and out-neuron. Fig 2.4 above shows the
Gene selected has 3 as its in-neuron and 4 as its out-neuron.

Once the selected Gene is disabled, two new connection Genes are created and added to
the individual. Notice that the numbers at the top of the displayed diagrams are actually
the innovation numbers on each connection Gene. The innovation numbers assigned to the
new Genes in the node insertion mutation assume that the link insertion mutation happened
first to some other network, which is why the first Gene here has an innovation of eight and
not seven.

– The first Gene has the old in-neuron as its in-neuron and the newly added neuron as
its out-neuron (3 -> 6)

– The second Gene has the newly added neuron as its in-neuron and the old out-neuron
as its out-neuron. (6 -> 4)

2.2.4 NEAT Individual Mutations

NEAT also mutates various aspects of individuals. Below, a brief description of these mutations
are given:

• Enable / Disable Mutation: In this mutation, there is a chance that a random enabled
/ disabled Gene from an individual is chosen and its state flipped, meaning if the Gene
selected is currently enabled it is disabled, and vice versa.

• Weight Mutation: This mutation causes a random Gene from an individual to be selected
and its weight mutated.

• Mutation Rate Alterations: Every individual in the population has a certain chance of
performing any of the previously mentioned mutations. These mutation rates can also be
mutated.

Page 15 of 40

2.3 Wolfenstein 3-D Game Mechanics

By the very nature of this project it is of high importance to be able to understand the source
code of the game in order to determine what information can and cannot be used for NEAT-
Doop’s learning. This section will introduce how Wolfenstein’s gameplay works and also give a
brief description of some parts of the source code where attention was focused early on. The
purpose of reading the source code at this stage was to understand how the Wolfenstein map
is represented and how objects, such as enemies and pickups, are tracked throughout gameplay.
These components will form an important base for the NEAT algorithm which is discussed after
this section.

2.3.1 Wolfenstein’s Gameplay

Wolfenstein is a First-Person Shooter(FPS) and the goal of each level is to get to an elevator
tile that brings the character to the next level. A player reaches the end of each level by moving
through a series of rooms in the game, potentially killing enemies and picking up items such as
health, ammo, treasure or new guns as it does so.

Depending on the difficulty selected, a variety of enemies will spawn in the game. These enemies
will attempt to kill the player on sight. The player is equipped with a low-power pistol and a knife
by default, although it is possible to pick up a sub-machine gun or a chain gun in various levels
that offers a higher damage output than the pistol.

Damage is done on a distance basis. The closer you are to an enemy when you hit them, the
more damage that is inflicted. This also applies to enemies, the closer they are to you the more
damage they do when they hit you.

Enemies react to sound. On hearing a gunshot, an enemy will move in the direction of the
gunshot. This will be the cause of a substantial amount of deaths in NEATDoop’s learning where
it shoots randomly and attracts enemies that ultimately, kill it.

Wolfenstein is a mostly deterministic game. Enemies and items that can be picked up, always
spawn in the same location. However, enemy movements are not deterministic and can cause
network replays to behave slightly differently.

2.3.2 Map Representation

Every map in Wolfenstein is represented as a 64x64 grid of tiles. It holds Byte values indicating
the type of structure located at that (x,y) co-ordinate. If the Byte value at a particular (x,y)
co-ordinate is greater than 0, then it can either be a wall, push-wall, door or an elevator tile (which
is the tile associated with the end of the current level). If the value at any (x,y) co-ordinate is 0
then it represents a plain tile that a player can walk on.

This particular information is vitally important for determining the structural surroundings of
NEATDoop during gameplay. From this 2 dimensional array of bytes it is possible to get the
spawn location in each level, the end location in each level and all wall, door and push-wall data
that will be used primarily as input to the neural networks of the population.

The elevator tile is a particularly important tile. On this tile a button is located that, when
pressed by the player, ends the current level. Reaching the elevator tile indicates that the AI
(NEATDoop) will have managed to learn to play a level of Wolfenstein. The co-ordinates of this

Page 16 of 40

tile position will be used later in the fitness function as will the spawn co-ordinates.

2.3.3 Enemy/Item Representation

Both enemies and items that can be picked up are represented as structs within the source code.

So called Actors, represent enemies and the player of the game. The struct storing their infor-
mation is named objstruct and contains information about the position of the Actor in the map,
the health the Actor has, the sprite image assigned to it and references to the next and previous
objstruct etc. A list of objstructs is maintained with the name objlist which stores all Actors
currently alive on the map.

Items that can be picked up include things like guns, ammo, health and treasure. These are
considered to be static items in the Wolfenstein Engine since they do not move. However,
other items such as chairs, tables and statues are also considered to be static. The struct that
represents these static objects is called statstruct and a list maintaining references to all static
items currently on the map is called statobjlist.

Identifying static items of interest is simple since each static item has a label associated with it.
For instance, ammo has a bo clip label associated with it so it is possible to iterate through the
statobjlist array and find items that would be considered useful for NEATDoop to pickup.

This chapter provided an overview of the work that was done early into the project timeline. The
NEAT algorithm was introduced which will be core to NEATDoop’s ability to learn. Finally, having
come to a decision on which game to use, the next natural step was to gain some insight into
how the most important information is represented as well as understanding how the mechanics
for the game work so that some factors from it could be used later on when designing the fitness
function.

Page 17 of 40

Chapter 3: Project Approach

The previous chapter introduced the game that was used for this project and outlined the NEAT
algorithm, which is at the very core of this project. This chapter will introduce the reimplemen-
tation of the original Wolfenstein source code used throughout the project, describe the methods
employed in order to identify and understand the most important source files from the Wolfenstein
source code and the importance of reading other adaptations of the NEAT algorithm.

3.1 Selecting the Source Port

Wolfenstein 3-D was originally written in a combination of the C and Assembly languages. Very
early on in this project it was desired to find another adaptation of the Wolfenstein source so that
integrating the NEAT algorithm into the source code would not involve writing in either of these
languages. This was primarily because the NEAT algorithm is much easier to understand if it is
implemented in an Object-Oriented language such as C++. As such, a source code adaptation
implemented in C++ was sought after.

Initially, the original source code was used. This involved using a compiler known as Borland
C++ v3.1, which is an old, outdated piece of software, in order to compile the source code. The
Borland compiler is a 16-bit compiler requiring it to be run within DosBox, since it is not possible
to run the compiler natively on a 64-bit machine. It was decided eventually that this means of
compiling and executing the source code was not ideal and so alternatives were considered.

Since it was desired that a C++ implementation of the source code be used, Wolf4SDL was
a promising candidate. This particular adaptation is essentially the same as the original source
code but it is commented more generously and allows the possibility for any integrated code to
be written in an object oriented language. Compiling the source code was still not ideal with this
adaptation, as it requires the use of an old version of C++, but it at least can run natively in a
64-bit Windows environment.

3.2 Understanding the Source Code

Once the Wolf4SDL source code was selected for this project the core source files needed to be
identified. This was a troublesome task. No adequate documentation for the source code exists
online and even though the Wolf4SDL source code is essentially identical to the original source,
only that it is written in C++, no in-depth documentation exists even for the original source.

Understanding the source code involved reading through certain source files that appeared impor-
tant. wl main was first explored. It seemed a natural starting point since it contains the main
game loop for the game and at that point it was assumed that any other immediately important
source files would be referenced from here. In order to quickly visualise the source files that were
directly referenced by wl main a program known as Doxygen was used to model dependencies

Page 18 of 40

between the C++ source files of Wolf4SDL. [11]

This was predominantly how the rest of the important source files were found. Below, a list is
provided describing some of the source files. These source files are considered important because
they either contain necessary information for NEATDoop to utilise or because they tie directly in
with the life-cycle of the game and were modified so that NEATDoop could take the place of a
human player.

• wl def.h: This is a sort of god source file. ID (Wolfenstein’s authors) designed this source
file to contain function, variable and macro definitions for use by all other source files. This
source file is where most of NEATDoop variables are defined. This makes it easy for both
the NEAT source files and the existing Wolfenstein source files to access them without
having to make modifications to many of the Wolfenstein source files (since all relevant
Wolfenstein source files include wl def).

• wl main.cpp: This source file contains the main loop for the game. It checks command
line arguments that were set for the game, such as –tedlevel. This command is used to
start the game on a particular level, which is used when replaying individuals. The use of
this command is necessary since the main menu does not allow selecting individual levels
within each stage.

The main use of this source file will be to set up the NEAT population at the start of the
main game loop.

• wl draw.cpp: As is pretty obvious from the source file’s name, this source file draws what
is visible on the screen. It scans in an area around the player’s current location searching
for enemies, pickups, walls, doors etc. Once it locates all of the items that the player can
see it uses ray-casting in order to generate a frame, which is a graphical representation
of the Wolfenstein world that is displayed on a computer screen. Frames are generated in
Wolfenstein at a rate of seventy per second.

In order to give the illusion that the game is 3D, logic is used to change the scale of sprites
for walls, enemies and pickups according to the distance of the object from the player’s
current location. The function AsmRefresh() implements this logic.

It was not necessary for this project to understand the exact way in which the code works
for this source file. Once it was discovered that the function DrawScaleds() finds all visible
items in close proximity to the player it was just a matter of incorporating the NEATDoop
logic into it.

• wl play.cpp: This source file contains a function called PlayLoop() which contains logic
that is executed repeatedly while a level is being played. It checks the keyboard for buttons
presses every frame of the game and checks the state of the player (have they died, have
they finished the level). It updates frames by making calls to the AsmRefresh() from
wl draw.cpp.

At this point it was understood how instead of polling the keyboard for controls, it would be
possible to set the keyboard buttons (which maintain a true or false value) to the boolean
values outputted by the individual’s network that is currently playing the game.

• wl game.cpp: If the state of the player changes during an iteration of the PlayLoop() in
the wl play source file, the loop exits and returns to the logic defined in wl game. wl game’s
logic switches on the player state to see what further logic is to be executed. In the case
that the player died, the player state is set to ex died. The wl game source file then
handles this case, amongst others in a function called GameLoop(). This is really all that
is necessary to understand in this source file.

• wl agent.cpp: When the player picks an item up, such as a new gun or ammo, functions
in this source file are called. These functions add the ammo to the player ammo pool etc.

Page 19 of 40

• wl act1.cpp: This source file is similar to the above source file but handles door / push
wall interactions. When the player opens a door / push wall, functions in this source file
are called.

3.3 Why NEAT?

As introduced in Section 2.2.2 the population for this project consists of a host of individuals
whose networks will be used to play Wolfenstein. Evaluating all of these individuals is very time
and resource consuming. As such it is vital that each individual’s network start as minimally
connected as possible and only modified when necessary. This very requirement immediately rules
out TWEANN algorithms because in order to ensure diversity in the population they often heavily
randomise the topologies of each network in the beginning. This introduces problems where it is
required to search through the population and remove poorly performing members. This is very
time consuming and as it turns out, avoidable.

3.3.1 The Problem with TWEANNs

Whilst TWEANN solutions are in effect, very similar to the NEAT solution, they have trouble both
with efficiently introducing genetic diversity to their population and with protecting structural in-
novations that are introduced as a result of mutations. Since TWEANN solutions generally create
individuals with random topologies when setting up the initial population, a lot of unnecessary
computational effort is spent trying to find individuals whose structural innovations are worth the
trade-off of extra computational evaluation time. [16]

It may be the case that two individuals have the same functionality but one has a topology that
is inherently more complex than the other; In which case, the TWEANN solution would have
just wasted computational time for no valid reason. NEAT avoids this by starting every network
with the simplest topology possible, keeping structural innovations only when they provide an
improvement. This has the effect of reducing the number of parameters in each topology that
need to be explored in order to produce an output from the network.

Some TWEANNs attempt to protect structural innovations by adding non-functional structure
to networks in the hope that the new innovation will be used at some point in the future. [15]
Unfortunately, in the event that no useful connections are incorporated with the new innovation
it results in extra parameters being added to the search space, further reducing the performance
of the network.

3.3.2 The Effectiveness of NEAT

NEAT is particularly attractive in a scenario where efficient learning of a complex input space is
required. If this was important for Seth’s project then it is even more important for this project
since Wolfenstein’s gameplay is more complicated than Mario’s. As will be seen in Chapter 6 a
significant amount of time is necessary for NEATDoop to learn even the simplest game mechanic’s
in Wolfenstein.

Run-time is the main reason why NEAT was selected. Since NEAT avoids many problems that
TWEANNs have, it runs much faster. Seth, the author of the previously mentioned YouTube

Page 20 of 40

video, had to let his AI learn for twenty-four hours before it was able to complete the first level
of Mario. Since Wolfenstein’s gameplay is more complex than Mario’s, it is not unreasonable to
assume that it would take longer than this in order for NEATDoop to learn a substantial portion
of gameplay for a single level. Had TWEANNs been used instead of NEAT the training duration
would have had to be even longer.

3.4 Examining Existing NEAT Implementations

This project was inspired by a video that was published on YouTube about a year and a half
ago. In it, the author described how he had designed and implemented an AI capable of playing
and completing the first level of Mario. The source that he wrote in order to accomplish this is
open-source and served as an initial reference to understand the way in which the NEAT algorithm
should be implemented.

3.4.1 MarIO

MarI/O is the AI that was created by author SethBling / Seth as a result of him implementing
the NEAT algorithm to play Mario. He wrote the NEAT algorithm in Lua as a plug-in for an
emulator called BizHawk. The implementation of the NEAT algorithm that he wrote does not
strictly follow the rules of NEAT, but it is sufficient enough to closely follow its guidelines and
produce similar results. [12]

The implementation of NEAT that was used in this project is based off Seth’s implementation. [13]
The Lua script that was written for his project was translated to C++ to be used for Wolfenstein.
The main difference between the implementations is that the one used for NEATDoop is object-
oriented and not a script.

Translating the Lua script was not a straight forward process. Since the version of C++ used
for this project is outdated many data structures and built in functions could not be used and
alternatives needed to be used. Simple things such as trying to convert a double value to a
std::string value are not trivial in C++98. In C++11, this is an easy task. The function
std::to string(doubleVal) will do this converting, however this is not available in C++98.

3.4.2 NEATFlappyBird

NEATFlappyBird is another implementation of NEAT that was explored in order to understand
how the algorithm works. This version of NEAT was not actually used for NEATDoop’s imple-
mentation directly, but the design principles for the objects were referred to since this version of
NEAT was written in Java. It was created by a French student named Alex and was found on his
GitHub from a simple search. [14]

This Chapter focused heavily on the actual approach that was taken having finished in-depth
background research on the NEAT algorithm and the Wolfenstein game. It included a discussion
on why the Wolf4SDL source code was used for this project, gave a brief description on the core
source files in the Wolfenstein source code and finally discussed what existing implementations of
the NEAT algorithm were referred to in order to design and implement the NEAT algorithm for
the Learning to Play Wolfenstein project.

Page 21 of 40

Chapter 4: Design Aspects

Chapter 3 focused on some of the tasks that were completed early on in the project time frame in
order to build a strong foundation for the actual implementation of the Learning to Play Wolfen-
stein project. This chapter describes how a NEATDoop neural network works and demonstrates
the interaction between the Wolfenstein gameplay and the NEAT algorithm.

4.1 Understanding the NEATDoop Neural Network

The previous section details why it is important that each network used to play Wolfenstein be
efficient. This section focuses on understanding how different networks topologies cause different
gameplay interactions with Wolfenstein. Here, it is important to note that the way networks are
built and manipulated is directly affected by the fitness function used for evaluating the success
of each network.

As was outlined in Sub-section 2.2.3, NEAT mutates a network’s topology using two types of
mutations. There are a few ways these can affect NEATDoop’s networks:

Figure 4.1: Shows two types of Network / Phenotype topologies.

• The inputs for this project, in its current state, are represented as eleven 5x5 matrices
representing the space around the player. Each of these matrices represents a specific thing
that NEATDoop can see e.g enemies, ammo, health. Node insertion mutations can cause
a previously unused input to be utilised. This will attach a Neuron to a cell in one of the
eleven matrices. Depending on whether or not the Neuron link is enabled or disabled, when
the cell reads a positive value the Neuron may be activated. Node insertion mutations can
also create new neurons within the hidden layer of a network, which are either connected
internally within the hidden layer or to the output layer.

• Node insertion mutations can cause previously used inputs to be deactivated. This simply
happens when the Gene that links the Input Neuron to some other Neuron in the network
is disabled.

• Network behaviour can either be very simple or rather complex. Consider, for example,
scenarios as depicted in Fig 4.1. In the first network, an input Neuron is connected directly
to an output Neuron. When this input Neuron is activated there exists a chance that the
output Neuron will also be activated. This behaviour is predominantly seen in early stages of

Page 22 of 40

training since each network initially only consists of input and output layers. The activation
of a Neuron is calculated according to the below formula.

ρ = ϕ(
n∑

i=0

input weighti · ρi)

This formula denotes that the activation on any Neuron is the sigmoid (the modified sigmoid
which was introduced in Subsection 2.2.1) of the sum of the weights of each input link to the
Neuron multiplied by the activation of the other Neuron on that link. If ρ, the activation,
is greater than zero for a particular Neuron, then it is considered to be activated.

The second network might be seen after some amount of training. In this case, if the
input Neuron is active, the output Neuron has either a greater or smaller chance of being
activated depending on the activations of the numerous Neurons in the hidden layer.

• The networks in the Learning to Play Wolfensteinproject each have nine outputs. Each is
given an output Neuron in the output layer of each network. These outputs represent the
nine buttons that NEATDoop can press during gameplay e.g move forward, turn left, shoot
etc.

The fitness function can easily bias the way future individuals are generated. By rewarding
NEATDoop for completing certain tasks, subsequent generations may modify networks to perform
in unexpected ways. This exact behaviour was seen in early testing where NEATDoop was allowed
to keep playing Wolfenstein so long as it kept moving. It biased some of the networks to just
keep running in a circle, forever.

4.2 Wolfenstein and NEAT Interaction

Now that a comprehensive description of the NEAT algorithm has been given the next step is to
understand its interaction with Wolfenstein’s gameplay. This will be the focus of this section.

Fig 4.2 shows a dependency diagram showing the interaction between NEATDoop source files
and some components of the Wolfenstein source.

wl def.h creates an instance of the NEATDoop object. Since this source file is included by most
Wolfenstein source files, they have access to the NEATDoop object.

Circular dependencies between Genome.h, NEATDoop.h and wl def.h were avoided by moving
some constant definitions to a new source file, Def.h.

Source file Genus.h is comparable to the Pool defined in the Seth’s project. A Genus consists of
a group of Species and is implemented as a static class in this project, since only one Genus will
exist.

Neurons have a list of Genes, which are all the Genes whose out-neurons connect to a specific
Neuron.

In this section, high level definitions were given for some of the essential design aspects of the
Learning to Play Wolfenstein project. These included the design principles behind using the
NEAT algorithm instead of other types of Topological altering algorithms, how NEATDoop’s
Neural Network evolves and the source interaction between the NEAT algorithm and the main
Wolfenstein source files. The next Chapter, Detailed Design and Implementation, will give a more
technical description as to how several components of NEATDoop were implemented.

Page 23 of 40

Figure 4.2: Shows a dependency diagram of a subset of important interactions between some
of the Wolfenstein source files and the NEAT algorithm. The dulled line indicates NEATDoop.h
using the static class Genus in its source file

Page 24 of 40

Chapter 5: Detailed Design and Implementation

Chapter 4 gave a high level description for some of the design aspects of the Learning to Play
Wolfenstein project. These aspects included the reasoning behind the use of the NEAT algorithm
and the interaction between Wolfenstein’s gameplay and NEAT algorithm. The main focus of
this chapter is to describe how NEATDoop interacts with components of the source code of
Wolfenstein and how, as a result of this interaction, it is able to identify objects during gameplay
and make decisions based on what it can see. This will also lead to discussions of how NEATDoop’s
learning process is aided by assigning every attempt a measure of success and of how an individual
is able to be replayed.

5.1 Giving NEATDoop Game Vision

In order for NEATDoop to make decisions during gameplay it needs to be aware of its surroundings.
In order to do this it is necessary to identify how and where objects in the game are represented.
As was mentioned in Subsection 2.3.3 there are structs in the Wolfenstein source that describe
enemies and pick-ups, and arrays that represent walls, doors and walkable space. By accessing
these data structures it is possible to provide NEATDoop with so called Game Vision.

There is a special struct pointer in the Wolfenstein source that contains information about the
player. This pointer is used in the wl draw.cpp source file in order to identify what the inputs
to an individual’s network ought to be. Specifically, a special function called GetInputs() made
specifically for this project, is called and uses the player location in order to scan an area around
their position and identify important information.

Depending on what lies in the tiles surrounding the player, specific cells in specific arrays are set
to 1 which indicates something is there (otherwise they remain 0). Recall that the network inputs
are eleven 5x5 grids. Below is a small example as to how some of the arrays of the input might
be set for the given tile map on the left side of Fig. 5.1. This demonstrates something similar to
how the inputs are actually set within the game, frame by frame.

Figure 5.1: Shows a mapping from a sample Wolfenstein map state to network input.

Page 25 of 40

The above is a simple example. The way certain inputs are set can change during gameplay. For
instance, when a door is spotted the cell associated with the door’s position in the door array
is set to 1. However, when the player opens the door that same cell is set to 0 and the same
position in the walk-space array is set to 1. This indicates that for the duration of time where
the door is open, the character can move through it. Similarly, when items such as ammo are
picked up, the cell associated with that position gets set to 0, indicating that the item was picked
up and no longer exists on the map.

Figure 5.2: Shows the contents of the array associated with walkable space once a door is
opened.

The function that was mentioned earlier, GetInputs(), updates the inputs once per frame. This
is done by calling the function directly from Wolfenstein’s DrawScaleds() function which, as
mentioned in Section 3.2, already detects what objects surround the player’s current location.
The contents are analysed by the current network every five frames, which is similar to the
approach taken in Seth’s Mario project. This frame delay is fixed to five since increasing the
frame delay by too much can cause NEATDoop to temporarily stop pressing buttons before the
next set of network inputs are processed.

5.2 Playing Wolfenstein with NEATDoop

As was previously discussed, all individuals start out initially with just an input and output layer in
their networks. Most of these individuals accomplish nothing in the first generation. Eventually
however, one or more individuals will be found (maybe in a subsequent generation)that will have

Page 26 of 40

a Neuron active that causes the forward key to be pressed. This Neuron could be taking its value
from any of the eleven 5x5 grids but it is hoped that it will take its value from the walk-space
grid, as that would make the most sense.

Figure 5.3: Walk-space input array at start of Wolfenstein Stage 1 level 1.

Fig 5.3 shows what the Walk-space input array looks like at the start of Stage 1 level 1 in
Wolfenstein. On the right side of the array is a simple network with one input Neuron that reads
from a cell in the walk-space array and is attached to the walk output Neuron. The input Neuron
shown will always point to the same cell in the walk-space array and so long as it reads a 1 in the
cell it points to, the Walk Neuron has to potential to activate which would cause NEATDoop to
move forward.

Figure 5.4: Shows the state of the walk-space array once NEATDoop has hit the door and cannot
move any further.

Eventually, NEATDoop will walk into the door and not be able to move any further. Fig. 5.4
shows this scenario. In order to solve this problem, it is necessary to make the network larger,
adding another Neuron that will read from another input array, the Door array. Fig. 5.5 shows
the network solution to this problem. Once solved NEATDoop will open the door in front of it
and has the potential to continue walking so long as the first Neuron keeps reading a 1.

In general, the behaviour of each network is substantially more complex than the above example
but after several hours of training and is dependant on the level that is being learnt. For instance,
after approximately eight hours of training on the first level of Wolfenstein, the best individual’s
network had about one-hundred hidden Neurons.

These examples are intended to give an important insight into how NEATDoop might play the
game with a more complex network. It is also important to note that the solution provided in Fig.
5.5 is an efficient one, where the Neurons are reading from 5x5 grids that make sense. In reality
a network structure can evolve to read values in unexpected ways. An example of this would be
that a network that evolves to read from the Ammo pickup 5x5 grid and use 1 values in it to try
to open doors.

Page 27 of 40

Figure 5.5: Shows the solution to the previous problem where NEATDoop could not walk any
further.

5.3 Speeding Up Learning

One of the main reasons for using NEAT is its efficiency. Because every individual’s network
starts with a minimal topology (only has an input and output layer), all initial topologies perform
just as bad as each other with no significant outliers. In TWEANNs, since initial topologies can
be very complex and varied, some networks will perform much worse than others and so time
is spent finding and removing these networks. However, this does not mean that the learning
process for NEAT is swift. Seth’s AI in Super Mario World took twenty-four hours of continuous
learning to complete the first level. He programmed his AI to play the game at normal speed
which considerably slows down the learning process. Since Wolfenstein’s gameplay is considerably
more complex than Mario’s it should be obvious that in order to learn a considerable amount
of play it will take longer than twenty-four hours. It was therefore deemed necessary to try and
speed up Wolfenstein’s gameplay to hasten the learning process.

Speeding up the gameplay involves changing a TickBase variable that handles the speed of
enemy, player and door animations. Having experimented with this variable, it seems as though
making the gameplay any more than five times normal speed causes severe time scaling problems.
It appears that the time it takes for certain animations to play does not scale properly with the
timing variable. This became very apparent when replaying certain individuals. In experiments
done at ten times normal speed for a particular individual, NEATDoop was capable of making it
through doors for instance, but when the same individual was replayed at normal speed it would
get stuck in a corner beside the door.

It has been concluded that, while it is possible to speed up the gameplay and thus the learning,
it is not possible to reliably replay the generated solution at normal speed, it must be replayed at
the same speed it was learnt at.

5.4 Attempt Termination

The terminal condition for NEATDoop is when it completes a level in Wolfenstein. This raises
an interesting question though, How do we move to the next network if NEATDoop does
nothing useful? It turns out that it is possible to use a similar approach to how Seth handled
this in Mario. By assigning a timeout to every individual it is guaranteed that eventually the

Page 28 of 40

current individual will be forced to stop playing.

The timeout for Wolfenstein is initially set to approximately two seconds (150 frames) for every
individual. If the individual’s network does nothing useful in those two seconds it will time out
and the next individual will be assessed. However, the problem now remains as to how we stop
the individual timing out when it is in fact doing something useful.

5.4.1 Letting NEATDoop Continue to Play

In order to solve the previously mentioned problem it is necessary to adjust the timeout variable
during the actual play. If NEATDoop’s co-ordinates have changed, it has picked up an item, has
opened a door or has killed an enemy then approximately two seconds (150 frames) are added to
the timeout variable.

However, this actually introduces another problem. If NEATDoop learns to press the move forward
button and the turn left / right button at the same time then it can cause NEATDoop to learn
to move in a circle indefinitely.

The base case of this problem is easily solved. If the move forward and turn left / right buttons
are active at the same time, a circletimeout variable is activated. If these buttons are activated
for too long (approximately the time it takes to make two full circles) then the current individual
times out and the individual’s fitness is deducted 500 (which is substantial) to discourage this
type of behaviour.

If the current map contains a more complex loop, such as a figure of 8, and an individual’s network
learns to run around it the above solution will not work. A possible solution to this problem is to
remember what parts of the map the individual’s network had already explored and time out the
individual if the same place was visited too often. This was not implemented however.

The variables that allow the timeout to be modified during gameplay are kept up to date, frame
to frame. The code that updates these variables was added to the relevant parts of the Wolfen-
stein source. The pickups variable, for instance, is updated in several places of the source file
wl agent.cpp. This is because pickups include health, ammo, keys and guns and so the variable
is updated in functions HealSelf(), GiveWeapon(), GiveKey() and GiveAmmo().

5.5 Calculating Distances

Initially, when updating the timeout in each frame a distance calculation was used to identify if
NEATDoop had moved from its (x,y) position in the previous frame. Originally the Euclidean
distance formula was used, but this proved to be too computationally expensive and so the
Manhattan distance formula was used instead.

In the end, neither of these formulas ended up being needed to alter the timeout variable during
gameplay. Instead the current and previous (x,y) co-ordinates are compared to see if there is a
difference. The Manhattan distance is used however in the fitness function as will be seen later.

Page 29 of 40

Figure 5.6: Shows the formulas used to calculate distances between two sets of (x,y) co-ordinates

5.6 Aiding NEATDoop’s Learning

In order for NEATDoop to learn how to play Wolfenstein it is necessary for each network used to
play the game to be assigned some sort of score that denotes the success of that network. This
is done using a fitness function which rewards the network for specific tasks it completes during
gameplay. This section is going to outline this function and show how it can bias learning.

The below fitness function was used to analyse networks that had timed out or were killed during
gameplay. This fitness function was developed on a trial and error basis, some of the other fitness
functions that were tried will be discussed in Chapter 6.

F = (MAX DISTANCE − distanceFromEnd) · 10 +

distanceFromSpawn2 · 10 +

pickups · 100 +

accuracy · 10 +

kills · 50 +

inputsused +

levelDoneReward

• The constant MAX DISTANCE is the largest Manhattan distance that can be achieved in
a 64x64 grid map (the size of each Wolfenstein map).

• distanceFromEnd is the Manhattan distance between NEATDoop’s position when it either
timed out or died and the end of the level.

• distanceFromSpawn is a similar variable to distanceFromEnd. It is the Manhattan distance
from the spawn location in the map and the position of NEATDoop when it timed out /
died.

• The coefficients that were used for the fitness function were found through a trial and error
process.

• The above fitness function is a simplified version of the actual code written to assign
an individual’s network a fitness measure. The levelDoneReward is a reward given when
NEATDoop makes it to the end of a level, which it did not in any of the short training
sessions done. In the actual code, unless NEATDoop reaches the end of the current level
this variable is not added.

Page 30 of 40

Coefficients for the fitness function were modified when they either rewarded NEATDoop too little
or too much. The most desired behaviour for the game is movement, so it makes the most sense
for this to be weighted highly. By making this measure a combination of the distance from the
end and the distance from the start, NEATDoop hopefully learns to move away from the spawn
point but in the general direction of the end of level tile.

5.6.1 Fitness Biasing

If only one distance measure was used, say for instance distance from spawn, then it would have
resulted in NEATDoop learning to get as far away from the spawn as possible and not learning
to try and finish the game. This is an example of fitness bias.

Earlier versions of the fitness function were particularly vulnerable to fitness biasing. One of the
first networks that successfully learnt to get through several rooms in the first level was killed as
a result of this. What had happened was one of the networks had learnt to pick up numerous
items of ammo while another learnt to move through the several rooms. However, the network
that had picked up the ammo had been given a higher fitness and so the other individual and
its network were killed off and not brought forward to the next generation. This simple example
demonstrates how modifications were made to the coefficients to help avoid this problem.

5.7 Saving NEATDoop Attempts

An important aspect of this project is making it possible for an individual’s network to be replayed.
This is considered valuable since it takes a considerable amount of time for NEATDoop to learn
to do something worth replaying. For instance, it took approximately eight hours for NEATDoop
to learn to exit the first room and turn left towards the level end at normal gameplay speed. In
order for a particular network to be replayed a representation of its network needs to be saved
and reloaded. This section outlines how this is done.

5.7.1 Saving the Network Encoding

There is a very important consequence of NEAT using direct encoding, which was stated earlier in
Subsection??. It allows the entire network to be described in the Genes of an individual, meaning
that the entire network can be rebuilt using the Genes of an individual alone.

This means that the only information about the network that needs to be remembered in order
to rebuild the network for a previous attempt at playing Wolfenstein is stored in the Genes.

Fig 5.7 shows how an individual for this project is stored. The first four lines always contain the
same information. All other lines are Gene encodings. All output Neurons (which are connected
to buttons such as move forward, shoot etc..) have a integer value in the range 10, 000 ≤ x ≤
10, 009. All input Neurons have an integer value in the range 0 ≤ x ≤ 274.

1. Fitness: The fitness of the encoded individual

2. Global Rank: A global rank assigned to every individual across all niches / species. A
global rank of 0 indicates that this is the best fitness across the entire population for some

Page 31 of 40

Figure 5.7: Shows a sample encoding of an individual

generation

3. Max Neuron: The number of Input + Hidden Neurons that there are. A Max Neuron of
274 means that there are no hidden neurons and so in Fig. 5.7 there is one hidden Neuron.
The number of Hidden Neurons will always be MaxNeuron− 274

4. Mutation Rates: Every individual has a certain chance of performing certain mutations.
These need to be saved with each individual encoding. A brief description for each is given
below:

(a) Connection: Chance to mutate the weight of a Gene.

(b) Link: Chance to perform a NEAT link insertion mutation between two random Neu-
rons in an individual’s network

(c) Bias: Chance to perform a biased NEAT link insertion mutation between a random
Neuron and the last input Neuron, 274

(d) Node: Chance to select a random Gene from an individual and perform a NEAT node
insertion mutation on it.

(e) Enable: Chance to enable a random disabled Gene from an individual

(f) Disable: Chance to disable a random enabled Gene from an individual

(g) Step: Chance to mutate the mutation rates.

These mutations are performed by generating a random double in the range 0 ≤ x ≤ 1,
if the double is less than a local copy p of a mutation rate, the mutation is performed. p
then becomes p− 1 and the process is repeated until p ≤ 0. This is done for each of the
mutation rates individually.

A problem with the current integer representations of the Neurons is that the size of the hidden
layer is limited. If all hidden neurons were assigned negative integer values instead of being in the
range 275 ≤ x< 10, 000, then the hidden layer could grow indefinitely if needed. However, no
network even came close to having 9,725 hidden neurons so the current representation is sufficient.

Page 32 of 40

5.7.2 Reloading the Individual’s Encoding

As it stands, reloading an individual from a file requires the file to be of the correct format. It also
must contain only one individual encoding. The consequence of this is that only one individual
can be replayed at a time.

Since the first four lines of the individual encoding file will always contain the same information
these can be read directly into their corresponding individual variables. When it comes to reading
in the Genes for the individual, it loops until the end of the file reading in as many Genes as are
present in the file. From these Genes, the entire network can be perfectly rebuilt assuming the
encoding is correct.

The only necessary information to be reloaded in order for an individual to be replayed are the
Genes, but if it was required that learning be continued from a point in time then the extra
information would be required. However, the ability to reload a particular point in a training
session and continue learning was not implemented.

This Chapter gave a very in-depth discussion on the design and implementation of the Learning
to Play Wolfenstein project. Without going into too much detail about the underlying source
code, the way in which NEATDoop gets its inputs and how it plays Wolfenstein were described
in great detail giving some basic examples as to how more complex behaviour might work. This
chapter also outlined the distance formulae that were used as well as what fitness function ended
up being used. This chapter concluded with details about how individuals were encoded and
reloaded from files in order to replay the best individuals from each generation.

The next chapter will provide testing and evaluation documentation for the Learning to Play
Wolfenstein project.

Page 33 of 40

Chapter 6: Testing/Evaluation

Chapter 5 presented the techniques used to provide NEATDoop with the necessary functionality
to learn how to play Wolfenstein. This chapter will give an analysis of the various fitness functions
that were used over the course of this project as well as describing the testing that was done with
NEATDoop. The chapter will conclude with an evaluation of NEATDoop. This will be aided by
results that were obtained from running the software that was created as a result of combining
the NEAT algorithm with Wolfenstein’s source code.

The way in which NEATDoop learns heavily depends on the fitness function used to assign a score
to the networks used to play Wolfenstein. Various different fitness functions were experimented
with in order to find the most suitable one that allows NEATDoop to learn to play Wolfenstein
in the way it is expected to. The expected way for NEATDoop to learn is to try to continually
move toward the end of the level.

Over time, the fitness function used for this project was changed significantly. Originally, a
fitness function identical to Seth’s was used. This was just a measure of how far from the spawn
NEATDoop got and how fast it got there. This was done primarily out of curiosity. It was obvious
at the time that this would not be a viable fitness function to accurately measure the performance
of each network since it does not take into account various aspects of the game that are essential
to gameplay, such as collecting ammo and extra health. Below, frames is divided by seventy
(since Wolfenstein plays at seventy frames per second) to get the number of seconds elapsed.

F = distanceFromSpawn− frames

70

The next fitness function used did take into account several important aspects of Wolfenstein’s
gameplay such as rewarding NEATDoop for collecting extra ammo and health. However, this
particular fitness function rewarded killing enemies and collecting items too heavily causing several
networks that made it through several rooms of the first level to be killed off in favour of collecting
items in the game such as ammo. As you can see, this is because the coefficients used in the
fitness function for pickups and kills are far too large relative to the distance travelled coefficients.

F = (MAX DISTANCE − distanceFromEnd) · 10 +

distanceFromSpawn2 · 10 +

pickups · 500 +

kills · 200 +

levelDoneReward

The final fitness function developed was very similar to the above one and was shown in 5.6.
The changes made were done to the coefficients of the fitness function. Two new measures
were also introduced, one which awards the use of inputs in the network and the other rewarding
NEATDoop for its accuracy, which is calculated by:

accuracy =
shots on target

shots taken

.

Page 34 of 40

6.1 Testing NEATDoop

In order to test NEATDoop’s ability to learn, the program was run on several levels of the first
stage of Wolfenstein for several hours. For the most part, this was done overnight. Since one of
the exceptional specifications for this project was to get NEATDoop learning on half or more of
the levels in the first stage of Wolfenstein, training sessions were done on six levels of the first
stage, in which there are ten levels overall. None of these training sessions resulted in a level being
completed but NEATDoop was still able to learn fundamental aspects of Wolfenstein gameplay,
such as picking up ammo, opening doors etc.

In early development, debugging the program involved running training sessions for several hours
in order to find crashes and bugs in the code. This particular process took a lot of time. In order
to easily reproduce bugs when debugging, the same random seed was used so that any crashes
would occur at the same point in time. This, however, could still involve waiting several hours
for the bug to reappear.

All final training sessions lasted between ten and eighteen hours. The main reason for not training
any longer is that NEATDoop had problems distinguishing similar parts of maps from each other
and would get stuck trying to learn how to treat them differently for too long. Training sessions
were terminated when it was thought that NEATDoop would not be able to get any further.
Regardless of this issue, NEATDoop still shows that it is capable of learning the fundamentals of
the Wolfenstein gameplay even if it cannot fully complete a level.

6.2 Evaluating NEATDoop

From the results shown in this document, it is clear that NEATDoop successfully learns to play
some aspects of Wolfenstein very well. From the various training sessions that were done, it was
proven that NEATDoop could learn the fundamentals of Wolfenstein’s gameplay. It was capable
of learning to open doors, shoot enemies, pick up ammo / health and even find secret rooms with
extra treasure and weapons. Usually, after approximately ten hours NEATDoop would struggle to
progress for a considerably long amount of time. All training sessions were terminated at around
this time simply because NEATDoop would fail to distinguish similar sections of the map from
each other. In these scenarios it would thrash by adding large amounts of new hidden Neurons
and by creating new Neural connections but it would still struggle to progress.

NEATDoop’s struggle to distinguish similar looking parts of the map was the main cause for many
of the training session’s best fitnesses plateauing for so long. This exact problem was present in
Seth’s Mario project. In his video he describes how his AI had lots of problems with learning to
do the opposite to what it had just learnt. In Wolfenstein’s first level of Stage 1, NEATDoop
needs to learn to open the first door and turn left. Because it has just learnt to open doors, when
it sees the second door it can, instead of turning left, walk forward and open the second door in
front of it. This scenario is shown in Fig. 6.1.

6.2.1 Some Results

Since only the individuals with the highest, lowest and median fitnesses from each generation are
encoded and saved to external files so that they can be replayed, a lot of NEATDoop’s learnt
behaviour is not seen when replaying these. From observing NEATDoop’s training sessions it is

Page 35 of 40

Figure 6.1: Shows the second door at the start of Stage 1 - level 1 that, if NEATDoop learns to
open, causes NEATDoop’s learning to plateau for a long period of time during training.

clear that movement is rewarded more than other tasks such as collecting ammo. While this is
intentional it does cause more interesting behaviour (such as killing enemies) to rarely be seen
when replaying individuals.

Figure 6.2: Shows the best network fitness per Generation for the first level of Stage 1 in
Wolfenstein.

Fig. 6.2 shows learning behaviour that was seen across all training sessions. Generally, learning
was slow with a lot of plateaus. Most of these plateaus were scenarios where NEATDoop had
to learn to treat similar parts of the level differently. While it was able to solve some of these
scenarios and progress it would eventually get stuck and not be able to get any further. This
particular example shows the best networks from a training session done on the first level of
Wolfenstein. This particular session was run over the course of about thirteen hours and was
terminated because NEATDoop had not learnt a significant amount in a very long period of time.
While the graph shows an increase in fitness, this was nothing significant in terms of Wolfenstein
gameplay.

The training session that was done for level three of the first stage of Wolfenstein was the most
successful, although this may be due to it being run for the longest period of time (approximately
eighteen hours, see Fig. 6.3). This particular training session was an interesting one because it
was actually unable to learn very much at all for the first eight or so hours. In this time period,

Page 36 of 40

Figure 6.3: Shows the best network fitness per Generation for level three of the first Stage in
Wolfenstein

it would just run straight and go through the first door it saw. Eventually, at around generation
fifty it learned to turn left and made a significant amount of progress. It then had a lot of issues
with making it past an enemy that is behind the door it opens when it turns left. At around
generation one hundred it learnt to just run around the enemy but then ended up getting stuck
for too long and so the training session was terminated.

Page 37 of 40

Chapter 7: Conclusions and Future Work

The previous chapter explained the results that NEATDoop produced over several training sessions
and described the different fitness functions that were experimented with. The chapter concluded
with an evaluation of NEATDoop, presenting its ability to learn how to play Wolfenstein. This
chapter will make some final remarks about the Learning to Play Wolfenstein project and outline
some future work that could be done with it.

7.1 Extending NEATDoop

Extending NEATDoop’s functionality would primarily revolve around changing the inputs to the
network and the fitness function. In its current state, NEATDoop has issues with distinguishing
similar parts of the map from each other. This is something that could potentially be fixed by
using NEATDoop’s previous movements on the map as extra inputs to the network. This is
something that was conceived too close to the end of the project deadline to implement but it
could result in significantly better learning as NEATDoop would have a means to distinguish its
current surroundings from similar surroundings that were seen previously.

Figure 7.1: Shows how two similar map states might be distinguished from each other.

This could be implemented by determining what directions (North, East, South, West) NEATDoop
had moved in from the previous N frames and by then using the data as extra input to the
networks. The set of directions would then serve as an almost unique stamp on the current map
inputs that are being seen by NEATDoop. The thought process here is that if NEATDoop comes
to a portion of the map similar to one it has seen before, as shown in Fig. 7.1, then it will be able
to hopefully make a different decision to the one it made before because it got there in a different
way. These extra inputs could also be used to solve the complex circular path problem discussed
in Subsection 5.4.1. There still exists the chance that NEATDoop reaches two similar looking
parts of a map in the same way so these directional inputs may still not uniquely differentiate
them.

Page 38 of 40

The fitness function is another component of this project that could be improved. As it stands,
the fitness awarded for the distance from the end of the map is very basic, this could be altered
to better reward NEATDoop for getting closer to the end of the level. The coefficients used
for assigning fitness based on how much ammo was picked up etc. could also be improved.
There needs to be a balance in the fitness function between awarding NEATDoop enough so that
movement is encouraged but also so that it enables NEATDoop to learn to pick up vital items
such as keys, ammo and health.

Finally, longer training sessions could be run with NEATDoop. Even though it was found that
learning progress was slow after around ten hours of training, if NEATDoop was let learn for a
longer period time then it would be able to learn far more Wolfenstein gameplay.

7.2 Final Conclusion

The Learning to Play Wolfenstein project was inspired by a video that was seen over a year ago
where a popular YouTube content creator, Seth, successfully created an AI capable of playing
Mario using a machine learning algorithm called NeuroEvolution of Augmenting Topologies
(NEAT).

The goal for this project was to do similar, but for a more complex game called Wolfenstein 3-D.
The AI created in this project, named NEATDoop, was successful in learning the fundamental
skills required to play some parts of various levels within Wolfenstein but struggled with learning
to distinguish similar parts of maps from each other, resulting in the AI’s learning progress getting
stuck for long periods of time. This exact same behaviour was seen in Seth’s Mario AI but it was
able to solve this problem both because these scenarios happened much less frequently but also
because the gameplay in Mario is much simpler to learn.

Overall, this project was successful in creating an AI capable of learning to play parts of various
levels within Wolfenstein 3-D, although NEATDoop was unable to learn to actually finish any of
these levels. This was primarily due to the complex gameplay of Wolfenstein 3-D and also the
necessity for very long training periods in order for NEATDoop to learn a substantial amount
about a particular level.

Page 39 of 40

References

[1] Kenneth Stanley & Risto Miikkulainen, ’NeuroEvolution of Augmenting Topologies’, Evo-
lutionary Computation, vol. 10, no. 2, 2002 , 30 pp.

[2] Fabien Sanglard, ’Duke Nukem 3D Code Review’, [web blog], 13 February 2013,
http://fabiensanglard.net/duke3d/index.php, (accessed July 2016)

[3] Gary Mac Elhinney, ’Duke Nukem3D project’, [email to Fabien Sanglard], 10 April 2016.

[4] Fabien Sanglard, ’Chocolate Duke Nukem’, [website],
https://github.com/fabiensanglard/chocolate duke3D, 2013, (accessed June 2016)

[5] ID Software, ’Wolf3d’, [website], https://github.com/id-Software/wolf3d, 2012, (accessed
August 2016)

[6] Iona Chera, ’AutoDoom’, [website], https://github.com/ioan-chera/AutoDoom, 2009, (ac-
cessed August 2016)

[7] Moritz Kroll, ’Wolf4SDL’, [website], https://github.com/mozzwald/wolf4sdl, 2013, (ac-
cessed October 2016)

[8] Vittorio Maniezzo, ’Genetic Evolution of the Topology and Weight Distribution of Neural
Networks’, Transactions on Neural Networks, vol. 5, no. 1, 1994, 15 pp.

[9] B. Müller, J. Reinhardt & M.T Strickland, ’Neural Networks An Introduction’, 1995, pp.
325

[10] Gene Sher ’DXNN:Evolving Complex Organisms in Complex Environments Using a
Novel TWEANN System’, 2011, pp. 2

[11] Dimitri van Heesch, Doxygen, [website], http://www.stack.nl/∼dimitri/doxygen/index.html,
(accessed November 2016)

[12] Seth / SethBling, ’MarI/O - Machine Learning For Video Games’,
https://www.youtube.com/watch?v=qv6UVOQ0F44, (accessed March 2016)

[13] Seth / SethBling, NEATEvolve, [website], https://pastebin.com/ZZmSNaHX, 2015, (ac-
cessed March 2016)

[14] Alex. A, ’NEATFlappyBird’, [website], https://github.com/NeatMonster/NEATFlappyBird,
2015, (accessed December 2016)

[15] Gregory M. Saunders, Peter J. Angeline & Jordan B. Pollack, ’Structural and Behavioural
Evolution of Recurrent Networks’, 1994, 8 pp.

[16] Gene Sher, ’Discover & eXplore Neural Network (DXNN) Platform, a Modular
TWEANN.’, 2010, p. 2.

Page 40 of 40

	Table of Contents
	Introduction
	Why This Project Was Chosen
	Specification Changes

	Background Research
	Game Selection
	NEAT Algorithm
	NEAT Neural Networks
	NEAT Genetic Algorithms
	NEAT Topological Mutations
	NEAT Individual Mutations

	Wolfenstein 3-D Game Mechanics
	Wolfenstein's Gameplay
	Map Representation
	Enemy/Item Representation

	Project Approach
	Selecting the Source Port
	Understanding the Source Code
	Why NEAT?
	The Problem with TWEANNs
	The Effectiveness of NEAT

	Examining Existing NEAT Implementations
	MarIO
	NEATFlappyBird

	Design Aspects
	Understanding the NEATDoop Neural Network
	Wolfenstein and NEAT Interaction

	Detailed Design and Implementation
	Giving NEATDoop Game Vision
	Playing Wolfenstein with NEATDoop
	Speeding Up Learning
	Attempt Termination
	Letting NEATDoop Continue to Play

	Calculating Distances
	Aiding NEATDoop's Learning
	Fitness Biasing

	Saving NEATDoop Attempts
	Saving the Network Encoding
	Reloading the Individual's Encoding

	Testing/Evaluation
	Testing NEATDoop
	Evaluating NEATDoop
	Some Results

	Conclusions and Future Work
	Extending NEATDoop
	Final Conclusion

