
Implementing the Toffoli gate in
Quantum-dot Cellular Automata

I. seminar project

Biserka Cvetkovska,
Ivana Kostadinovska,

and Jirka Daněk

November 2013

This report presents results of our seminar work in course Unconventional
information processing methods and platforms taught by prof. M. Mraz at
University of Ljubljana in the winter semester of the academic year 2013/2014.

1 Introduction

The idea of this seminar project was to build the reversible Toffoli logic gate in Quantum-
dot Cellular Automata (QCA). For that manner, we created a practical implementation
of the gate in the QCADesigner and gave some examples that demonstrate how the gate
can be used as a part of more complicated reversible circuits.

1.1 Quantum-dot Cellular Automata (QCA)

A quantum-dot cellular automata is a finite state machine consisting of a finite or infinite
grid of quantum-dot cells. A quantum-dot cell is a set of four quantum dots located
at the corners of the cell and an electron pair. By providing tunneling junctions with
potential barriers, which are raised to prevent electron movement and lowered to permit

(a) Quantum-dot cell. (b) The two possible states of a QCA cell.

Figure 1: QCA cell.

1



electron movement, three states can occur. When barriers are low, the electrons can
localize on any dot and the Null state occurs, but when the barrier is raised, the cell is
polarized and the other two states can occur. These two states represent the logic “1”
and “0”. Because of Coulombic interactions, cells which are located near each other are
forced into matching polarizations. The propagation of polarization provides information
transfer.

1.1.1 Basic building structures

Basic structure in QCA technology is the wire and the majority gate or majority voter
(MV). Other structures like AND and OR can be implemented using the MV by setting
one of its inputs to a constant value.

1.1.2 Clock

The propagation of signals in all QCA circuits is driven by a codlock signal. Each QCA
cell belongs into one of four clock zones. The clock signal periodically goes through four
phases. There are two transitory phases that separate the two main phases – the hold
phase when the cell holds onto its value and the release phase when the cell assumes a
new value. The clock signals in the four clock zones are shifted from each other by a
quarter of a period. The difference from clock in a CMOS circuits is that in QCA the
clock is an external electric field that drives each individual cell, while in CMOS it is a
signal inside the circuit that is used to synchronize larger structures.

1.1.3 Wire

The simplest practical cell arrangement is given by placing quantum-dot cells in series, to
the side of each other. For example, Figure 2b (p. 3) shows a 90 degrees wire. When the
dots in the wire are rotated by 45 degrees this arrangement is called the 45-degree wire.

Wire crossing on the other hand can be done using two quantum-dot wires (one
90 degrees wire and one 45 degrees wire). The wire composed of one type passes
perpendicularly “through” a wire of the other type, Figure 2a (p. 3). The first type of
wire always propagates the same polarization, but the second type changes the polarization
from one cell to the next. But, at crossing point there is no polarization change in either
wire, therefore both wires preserve their own information.

1.1.4 Majority gate

As discussed earlier the most important logic gate in QCA is the majority gate. In this
structure, the electrical field effect of each input on the output is identical and additive,
with the result that whichever input state (“binary 0” or “binary 1”) is in the majority
becomes the state of the output cell — hence the gate’s name. Majority gate can be
used to implement logic conjunction (AND) and disjunction (OR), which together with
negation (NOT) gives us a complete logic system.

2



(a) Wire crossing. (b) 90-degree wire

Figure 2: Wires

(a) Negation. (b) Majority gate.

Figure 3: Negation and majority gate.

3



1.1.5 Negation

The NOT gate is not constructed using the MV gate. It has a single input and output
and it simply returns the opposite of the input. A standard implementation of the NOT
gate is given in Figure 3a (p. 3).

Negation can be also implemented by having two cells (both either 90-degree or 45-
degree) touch at the corner. Another possibility for negation is when a 45-degree wire
connects to a 90-degree wire.

1.2 Reversibility

A reversible logic gate is an n-input n-output logic device with one-to-one mapping. This
helps to determine the outputs from the inputs and also the inputs can be uniquely
recovered from the outputs. The simplest example of a reversible logic function is negation.
An example of a nonreversible logic function is logical conjunction or disjunction, since
there are several input configurations that produce the same output.

(x1, x2, x3) = Toffoli(Toffoli(x1, x2, x3))

As with the NAND function which is universal there has been a lot of research trying
to devise interesting universal reversible gates. Using only one type of a gate in a circuit
simplifies manufacturing process.

1.3 The Toffoli gate

The Toffoli gate is an universal reversible logic gate proposed in by Tommaso Toffoli
and can be used in the construction of any reversible circuit. Its structure is as follows.
The gate has three inputs that can be labeled x1, x2, x3 and three outputs y1, y2, y3
described by equations in Figure 4b (p. 5).

The working of the Toffoli gate can be also described by equations in Figure 4c (p. 5).
The Toffoli gate negates its first input if both the second and third input are equal to
logic “1”. The second and third input are passed through unchanged.

The input values that are passed through unchanged (only to provide reversibility) are
sometimes called garbage outputs [1].

1.4 QCADesigner

Before we proceed to the implementation of the Toffoli Gate, we would like to add
a few introductory words on the tool we used for drawing the QCA structures. The
QCADesigner [6] is a design and simulation computer program for QCA circuits developed
by the Walus Group at the University of British Columbia. It allows to design and
simulate QCA circuits. It is written using the GTK2 graphic library and it is published
under the General Public Licence. The official pages provide source code and prebuild
binaries for Windows and deb and rpm packages for GNU/Linux.

4



Input Output

x1 x2 x3 y1 y2 y3

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 1 1 1

1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 0 1 1

(a)

y1 = x1 ⊕ (x2 ∧ x3)

= (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x1 ∧ x2 ∧ x3)

y2 = x2

y3 = x3

(b)

Toffoli(x1, x2, x3) =

{
(¬x1, x2, x3) if x2 = x3 = 1

(x1, x2, x3) otherwise.

(c)

Figure 4: Toffoli gate.

2 Implementing the Toffoli Gate

We implemented the Toffoli gate in QCADesigner in three stages. First we implemented
the equation describing the first output, then we added the other two outputs and
finally we modified the design to make it more compact while keeping the functionality
unaffected.

We found a circuit implementing the XOR function in paper by Shah et al. [5] that
was provided to us by prof. Mraz. Together with the basic QCA blocks described earlier
we now have all the components that are needed to implement the Toffoli gate.

2.1 Previous work

Before implementing the gate ourselves, we searched the literature for existing implemen-
tations.

We found figures depicting the Toffoli gate in a paper by Chandra and Netam [2, fig. 7
on p. 73] and also in another paper by Mohammadi et al. [3, fig. 2b on p. 55]. Designs
in those two papers are identical and do not actually implement the Toffoli gate even
though both papers claim to be so. Still, the illustrations in the papers proved useful to
demonstrate some of the design techniques used together in a larger example.

Next we studied the diploma thesis by Rolih [4] which is primarily concerned with
three state logic but two state logic is also discussed. In this paper a working design of
the Toffoli gate is depicted in Figure 4.5 (p. 29). Compared to this design, the one we
come up with uses more cells (101 compared to 44) and the computation takes longer (11

4
clock cycle compared to 1). On the other hand, since inputs and outputs in our design
are easily accessible, it can be more easily integrated as a component into a larger circuit.

5



B

Y

A

X

-1.00

C

1.00

Z

-1.00

-1.00

Figure 5: Implementation of Toffoli gate by Rolih [4]. The two rows of cell show color
correspondence between this and the original figures.

2.2 Designing the first output

The function for the first output was obtained by connecting inputs x2 and x3 to an
AND gate, output of which was connected to a XOR gate, together with input x1.

2.3 Adding the other two outputs

To make the design look intuitive and to simplify connecting gates we decided to have all
inputs on the left side of our circuit and outputs on the right side. We used wire crossing
to deliver one of the inputs to the place inside the structure where it was needed and
also to take the output signal y1 from inside out.

2.4 Modifying the design

To improve the structure aesthetically and to conserve some space, we decided to
modify the structure while keeping the function essentially intact. The modification in
computation of output y1 consist of first negating inputs into the AND gate and then
changing the AND gate into an OR gate. This allowed to shift some cells a little bit to
the right. The first two changes together resulted in negating the output. The output y1
is a 45 wire, which means that applying another negation to it can be done easily.

6



-1.00
1.00

y1

-1.00

x1

x2

(a) The beginning.
-1.00

-1.00
1.00

y1

-1.00

x1

x2

x3

(b) First stage.

-1.00

-1.00
1.00

g

-1.00

x1

x2

x3

y2

y3

f

y1

(c) Second stage.

1.00

-1.00
1.00

-1.00

x1

x2

x3

y2

y3

f

y1

(d) Final stage.

Figure 6: The progression of our implementation of Toffoli gate.

7



Figure 7: The working of our circuit.



2.5 Problems

We have not succeeded in running QCADesigner in Linux. The binary packages used out
of date shared libraries and the source distribution did not compile successfully. Even
though we eventually managed to get it compile, when executed it crashed immediately
after the splash screen. We decided to use it on Windows XP and Windows 7 machines.

While designing the circuit, we did not have to debug it per se. Rather we sometimes
needed to correct our misconceptions about how the QCA works. We describe one of
them in the following subsection.

2.5.1 Outputs in QCA are influenced by clocking

Even though the QCADesigner does not visually differentiate it by color, the output
elements belong to and are affected by clock zones. One of our problems we had was
caused by assigning one of the inputs into a wrong clock zone. Because it was one clock
zone after the right one, the signal looked distorted. Changing the clock zone fixed the
problem.

3 Use of Toffoli gate

Toffoli gate is universal logic gate, meaning any logic function can be constructed using
only Toffoli gates. This is easily proven by constructing a NAND gate using only a Toffoli
gate or alternatively by constructing AND, OR and NOT gates, another complete logic
system. To simplify the equations, we define a hypothetical Toffoli’ gate which is a Toffoli
gate without the two garbage outputs.

Toffoli′(a,b, c) =

{
¬a if a = b = 1

a otherwise.

With our new Toffoli’ gate, NAND(a, b) can be constructed as

NAND(a, b) = Toffoli′(1, a,b),

NOT(x) becomes

NOT(x) = Toffoli′(x, 1, 1),

finally the AND(a, b) gate is

AND(a, b) = Toffoli′(0, a,b).

Having constructed these gates, the OR(a, b) gate can be then constructed from the
previous gates using one of the De Morgan rules

OR(a, b) = ¬(¬a ∧ ¬b)
= Toffoli′(Toffoli′(Toffoli′(a, 1, 1),Toffoli′(b, 1, 1), 0), 1, 1).

9



4 Conclusion

The article by Chandra and Netam [2] suggests that while the Toffoli gate is theoretically
interesting, its practical applications in QCA reversible circuits are limited. When
reversible circuits are designed, authors usually use the standard gates only as a first step
and develop modified reversible gates that would allow them to minimize the amount of
garbage outputs in the specific problem they are solving and use less cells.

References

[1] Md Selim Al Mamun, Indrani Manda, and Md Hasanuzzaman. Design of universal
shift register using reversible logic. 2012.

[2] Saroj Kumar Chandra and Deepak Kant Netam. Exploring quantum dot cellular
automata based reversible circuit. interaction, 2(1March), 2012.

[3] Zahra Mohammadi, Majid Mohammadi, and Mahdi Hasani. Designing of testable
reversible qca circuits using a new reversible mux 2×.

[4] Mark Rolih. Analiza možnosti realizacije logičnih reverzibilnih vrat v trostanjskem
kvantnem celičnem avtomatu. PhD thesis, Univerza v Ljubljani, 2013.

[5] NA Shah, FA Khanday, and J Iqbal. Quantum-dot cellular automata (qca) design
of multi-function reversible logic gate. Communications in Information Science and
Management Engineering.

[6] Konrad Walus, Timothy J Dysart, Graham A Jullien, and R Arief Budiman. Qcade-
signer: A rapid design and simulation tool for quantum-dot cellular automata. Nan-
otechnology, IEEE Transactions on, 3(1):26–31, 2004.

10


