Extra Credit Problem

William Slatton

November 28, 2015

1 Problem

let $y=\left(A x^{2}+B x+C\right) e^{D x}$
find $A, B, C, D \in \mathbb{Z}$ such that $y, \frac{d y}{d x}, \frac{d y^{2}}{d x^{2}}$ factor over \mathbb{Q}

2 Solution

Proof.

$$
\begin{aligned}
& \frac{d y}{d x}=\left(A D x^{2}+(B D+2 A) x+(C D+B)\right) e^{D x} \\
& \frac{d y^{2}}{d x^{2}}=\left(A D^{2} x^{2}+\left(B D^{2}+4 A D\right) x+\left(C D^{2}+2 A\right)\right) e^{D X}
\end{aligned}
$$

in order for these to factor, the quadratic elements must have roots in \mathbb{Q}
\therefore their respective discriminants must be per fect squares
Δ of $y=B^{2}-4 A C=n_{0}^{2}$ where $n_{0} \in \mathbb{Z}$
Δ of $\frac{d y}{d x}=B^{2} D^{2}-4 A C D^{2}+4 A^{2}=\left(D n_{0}\right)^{2}+4 A^{2}=n_{1}^{2}$ where $n_{1} \in \mathbb{Z}$
Δ of $\frac{d y^{2}}{d x^{2}}=B^{2} D^{4}-4 A C D^{4}+8 A^{2} D^{2}=n_{2}^{2}$ where $n_{2} \in \mathbb{Z}$
$(2 A)^{2}+\left(D n_{0}\right)^{2}=n_{1}^{2}$
$D^{2}\left(\left(D n_{0}\right)^{2}+8 A^{2}\right)=n_{2}^{2}$
$(2 A)^{2}+n_{1}^{2}=u^{2}$ where $u=n_{2} / D$, which must necessarily be in \mathbb{Z}
no solution for $A, B, C, D \neq 0$ by Fermat's Right Triangle Theorem

