Extra Credit Problem

William Slatton

November 28, 2015

1 Problem

 $let y = (Ax^2 + Bx + C)e^{Dx}$

find $A, B, C, D \in \mathbb{Z}$ such that $y, \frac{dy}{dx}, \frac{dy^2}{dx^2}$ factor over \mathbb{Q}

2 Solution

Proof.

$$\begin{aligned} \frac{dy}{dx} &= (ADx^2 + (BD + 2A)x + (CD + B))e^{Dx} \\ \frac{dy^2}{dx^2} &= (AD^2x^2 + (BD^2 + 4AD)x + (CD^2 + 2A))e^{DX} \\ in order for these to factor, the quadratic elements must have roots in \mathbb{Q}
 \therefore their respective discriminants must be perfect squares $\Delta of y = B^2 - 4AC = n_0^2$ where $n_0 \in \mathbb{Z}$
 $\Delta of \frac{dy}{dx} = B^2D^2 - 4ACD^2 + 4A^2 = (Dn_0)^2 + 4A^2 = n_1^2$ where $n_1 \in \mathbb{Z}$
 $\Delta of \frac{dy^2}{dx^2} = B^2D^4 - 4ACD^4 + 8A^2D^2 = n_2^2$ where $n_2 \in \mathbb{Z}$
 $(2A)^2 + (Dn_0)^2 = n_1^2$
 $D^2((Dn_0)^2 + 8A^2) = n_2^2$
 $(2A)^2 + n_1^2 = u^2$ where $u = n_2/D$, which must necessarily be in \mathbb{Z}
no solution for $A, B, C, D \neq 0$ by Fermat's Right Triangle Theorem$$