
Embedded Distributed Systems: A Case of Study

with Clear Linux Project for Intel R© Architecture

Author: Vı́ctor Rodŕıguez Bahena / Co-author: Marcos de Alba

November 28 2014

1 Abstract

The rise of IoT interconnected objects will lead to an explosion in the volume of
data that is collected, transmitted and processed. This explosion in volume will
require novel methods for this transmission and processing.Power consumption
and performance is one of the main design constraint for these systems. If
current trends continue, future petaflop systems will require 100 megawatts
of power. To address this problem the trend is towards the autonomous and
responsible behavior of resources This demo shows how a network of ultra-low-
voltage microprocessors platforms (Intel R AtomTM Processor E3815-Minnow-
Max) can process their own data (running real HPC workloads) without the
need of an external HPC system. This paper shows the impact of using a
custom OS for x86 architecture in a embedded distributed system.

2 Introduction

Computer technology has made incredible progress in the roughly 60 years since
the first general-purpose electronic computer was created. Today, less than 500
USD will purchase a personal computer that has more performance, more main
memory, and more disk storage than a computer bought in 1985 for 1 million
dollars. This rapid improvement has come both from advances in the technology
used to build computers and from innovation in computer design. [1]

As we have seen it was around the years 2003 to 2005 that a dramatic change
seized the semiconductor industry and the manufactures of processors. The in-
creasing of computing performance in processors, based on simply screwing up
the clock frequency, could not longer be hold ed. Scaling of the technology
processes, leading to smaller channel lengths and shorter switching times in the
devices, and measures like instruction-level-parallelism and out-of-order process-
ing, leading to high fill rates in the processor pipelines, were the guarantors to
meet Moore’s law.[2]

The answer of the industry to that development, in order to still meet
Moore’s law, was the shifting to real parallelism by doubling the number of
processors on one chip die. This was the birth of the multi-core area. The
benefits of multi-core computing, to meet Moore’s law and to limit the power
density at the same time, at least at the moment this statement holds, are also

1

the reason that parallel computing based on multi-core processors is underway
to capture more and more also the world of embedded processing.[3]

Where do we find these task parallelism in embedded systems? A good
example are automotive applications Multi-core technology in combination with
a broadband efficient network system offers the possibility to save components,
too, by migrating functionality that is now distributed among a quite large
number of compute devices to fewer cores.

The purpose of this paper is to present a case study to explore the benefits
of using a customized OS (against the community-supported OS: Fedora) on a
distributed embedded system. We will use MPI as the communication engine
for our benchmarks and experiments.

3 Theoretical Framework

In recent years several mature techniques for high level abstractions for inter-
processor communication are available, such as Message Passing Interfaces (MPI),
the problem is that these abstraction layers require extensive system resources
with comprehensive operating systems support, which may not be available to
an embedded platform.

Recent researches [4] [6] [5] describe proof-of-concept MPI implementations
targeting embedded systems, showing an increasing interest in the topic. These
implementations have a varying degree of functionality and requirements. These
papers also discuss different ways to address the limitations found in typical em-
bedded systems. For example, in the eMPl/eMPICH project [5] the main focus
is to port MPICH to an embedded platform and reduce its memory footprint by
removing some MPI functions. Azequia-MPI [6] is an MPI implementation that
uses threads instead of processes making MPI applications more lightweight,
Although, it requires an operating system that supports threads, which in em-
bedded systems it is not always available.

In recent years there has been some studies in this field. One of the firsts
is the adaption of the MPI protocol for embedded systems , LMPI [7] (Light
Message Passing Interface). The noble idea of LMPI is separation of its server
part (LMPI server) and the very thin client part (LMPI client). Both parts can
reside on different hardware or on the same hardware. Multiple clients can be
associated with a server. LMPI servers support full capability of MPI and can be
implemented using pre-existing MPI implementation. Although LMPI is dedi-
cated to embedded systems, to demonstrate the benefits of LMPI and show some
initial results, they built LMPI server using MPICH on a non-embedded system.
LMPI client consumes far less computation and communication bandwidth than
typical implementations of MPI, such as MPICH. As a result, LMPI client is
suitable for embedded systems with limited computation power and memory.
They demonstrated the low overhead of LMPI clients on Linux workstations,
which is as low as 10% of MPICH for two benchmark applications. LMPI clients
are highly portable because they don’t rely on the operating system support.
All they require from the embedded system is networking support to the LMPI
server.

All these research always talk about the lack of an operating system for Dis-
tributed System, However there are some works related to this area[8]. Those
are the distributed operating systems. The architecture and design of a dis-

2

tributed operating system must realize both individual node and global system
goals. Architecture and design must be approached in a manner consistent with
separating policy and mechanism. In doing so, a distributed operating system
attempts to provide an efficient and reliable distributed computing framework
allowing for an absolute minimal user awareness of the underlying command
and control efforts

With these techniques, distributed programming can be made much more
efficient. However, very few researchers have studied high level distributed pro-
gramming in embedded systems

4 Objective

The main objective of this work will be to prove that a distributed embedded
system (Intel R© AtomTM Processor E3825) running real HPC workloads (MPI
benchmarks) can be improved by the use of a customized operating system

5 Justification

The need of more complex and smart applications (they must adapt their per-
formance as well as power) has risen the bar to create distributed systems based
on parallel embedded platforms.

By definition: A distributed system consists of a collection of autonomous
computers, connected through a network and distribution middle-ware, which
enables computers to coordinate their activities and to share the resources of
the system, so that users perceive the system as a single, integrated computing
facility.

Advantages:

1. Partioning Workload: By partitioning the workload onto multiple pro-
cessors, each processor is now responsible for only a fraction of the work-
load. The processors can now afford to slow down by dynamic voltage
scaling (DVS) to run at more power-efficient states, and the degraded
performance on each processor can still contribute to an increased system-
wide performance by the increased parallelism.

2. Heterogeneous HW: Another advantage with a distributed scheme is
that heterogeneous hardware such as DSP and other accelerators can fur-
ther improve power efficiency of various stages of the computation through
specialisation.

Disadvantages:

1. Network: Despite the fact the distributed systems may have many at-
tractive properties, they pay a higher price for message-passing commu-
nications. Each node now must handle not only communication with the
external world, but also extra communication on the internal network. As
a result, even if the actual data payload is not large on an absolute scale,
the communication appears very expensive and does not scale to a few
more nodes

3

2. Lack of optimised OS: A typical embedded system often does not
contain an operating system. Crafting distributed programs on such a
bare-bone platform is extremely difficult and error-prone. Although many
higher-level abstractions such as Message Passing Interfaces (MPI) have
been proposed to facilitate distributed programming, these abstraction
layers require extensive system resources with comprehensive operating
systems support, which may not be available to an embedded platform

However in recent years we have seen an emergence of a new class of full-
fledged embedded systems (they are fully loaded with sufficient system resources
as well as networking and other peripheral devices, and a complete version of the
operating system with network support) In addition, they are typically designed
with power-management technology in order to extend the battery life

With these gaps closed there might be a chance to merge the parallel and
distributed paradigms on the embedded world. A merging point of technologies
from different domains often inspires technology innovations in new domains.

6 Development

According to these in consideration there are multiple scenarios to test the
capability of an embedded distributed system:

• Compare an Embedded system with generic SW (Linux base OS (Fedo-
ra/Ubuntu/Debian) and generic MPI protocol (MPICH)) against a regular
development system (with the same OS and MPI toolS)

• Compare an Embedded system with a distributed operating system against
the same embedded system with custom SW (Linux from scratch system)

• Compare an Embedded system with a distributed operating system against
the same embedded system with custom SW (Linux from scratch system
and MPI for embedded (LMPI)) in order to check the gap in the multiple
systems

For this report we will execute the experiment of the second scenario, due
to the fact that we have already done the study of the first scenario. In that
case we realize that despite the fact that the minnow Max ran 8 times slower
than the regular development system (NUC Haswell system) the Minnow Max
was more stable and with less drops in performance.

The platform we use for our experiment is the Intel R© AtomTM Processor
E3825. Their main characteristics are described on 1. The main limitation will
be the number of Cores that we have. This is me minimal number of cores we
could have to run parallel applications. [9]

The operating system we will use is the Fedora 19 system, the description of
the system is listed on the fedora project site home page (http://fedoraproject.org)

The benchmark we will use to measure the performance is MPIbench. This
is a program to measure the performance of some critical MPI functions. By
critical it means that the behavior of these functions can dominate the run time
of a distributed application. MPBench has now been integrated into LLCbench
(Low Level Characterisation Benchmarks)

The MPIfunctions that it stress are:

4

Procesor Number E3825
#Cores 2
#Threads 2
Clock SPeed 1.33GHz
L2 Cache 1MB
Instruction Set 64 bits

Table 1: Minnowboard CPU characteristics

• MPI Send/MPI Recv Bandwidth (Kb/second vs. bytes)

• MPI Send/MPI Recv Application latency or Gap time (us vs. bytes)

• MPI Send/MPI Recv Roundtrip or 2 * Latency (trns/second vs. bytes)

• MPI Send/MPI Recv() BidirectionalBandwidth (Kb/second vs. bytes)

• MPI Bcast broadcast (Kb/second vs. bytes)

• MPI Reduce reduction (sum) (Kb/second vs. bytes)

• MPI AllReduce reduction (sum) (Kb/second vs. bytes)

• MPI Alltoall Each process sends to every other process (Kb/sec vs. bytes)

7 Results

The results after the execution of the benchmarks are described on the Appendix
section (for minnow board and then for development board):

• MPI Send/MPI Recv Bandwidth (Kb/second vs. bytes)

• MPI Send/MPI Recv Application latency or Gap time (us vs. bytes)

• MPI Send/MPI Recv Roundtrip or 2 * Latency (trns/second vs. bytes)

• MPI Send/MPI Recv() BidirectionalBandwidth (Kb/second vs. bytes)

• MPI Bcast broadcast (Kb/second vs. bytes)

• MPI Reduce reduction (sum) (Kb/second vs. bytes)

• MPI AllReduce reduction (sum) (Kb/second vs. bytes)

• MPI Alltoall Each process sends to every other process (Kb/sec vs. bytes)

As seen on the results presented on the AllReduce (MPI Allreduce combines
values from all processes and distributes the result back to all processes) graphs
in both OS’s (either Clear LInux or Fedora) the drop of speed is extremely
fast until reach a minimal point of stability with packages grater than 1.04e+06
Bytes. if we look the graph we can see that Clear Linux can sustain a better
quality of transaction (much more stable and with less drops). The dramatic
drop after the increment of 1.04e+06 Bytes is not reflected on the Clear Linux
system. On the Clear Linux the speed is the same until the size of the packages

5

reach the 3.3e+07 Bytes. A similar behavior occurs on the unidirectional/bidi-
rectional and broadcast MPI bandwith.

Analyzing the Bidirectional Bandwidth algorithm (as an example of the root
cause of this behaivor):

i f (am i the master ()){
TIMER START;
f o r (i =0; i<cnt ; i ++){

mp irecv (dest rank , 2 , destbuf , bytes , &reque s ta r ray [1]) ;
mp isend (dest rank , 1 , sendbuf , bytes , &reque s ta r ray [0]) ;
MPI Waitall (2 , r eques tar ray , s t a t u s a r r a y) ;

}

e l s e i f (a m i t h e s l a v e ()){
f o r (i =0; i<cnt ; i++) {

mp irecv (source rank , 1 , destbuf , bytes , &reque s ta r ray [0]) ;
mp isend (source rank , 2 , sendbuf , bytes , &reque s ta r ray [1]) ;
MPI Waitall (2 , r eques tar ray , s t a t u s a r r a y) ;

}

We can see that at the end they use MPI Waitall. MPI Waitall blocks until
all communication operations associated with active handles in the list complete,
and returns the status of all these operations. In the case of Clear Linux there
is a reduced number of process running in background (No Xserver/Xorg/etc);
besides there is an implementation of systemd. This helps in lack of process
trying to gain control of the system and memory at the same time, which will
be reflected every time the MPI Waitall arrives.

In case of the All to all experiment (Each process sends to every other
process). we don’t see a huge gain on the performance. MPI Alltoall is a
collective operation in which all processes send the same amount of data to each
other, and receive the same amount of data from each other. The operation of
this routine can be represented as follows:

Algorithm:

MPI Comm size (comm, &n) ;
f o r (i = 0 , i < n ; i++)

MPI Send (sendbuf + i ∗ sendcount ∗ extent (sendtype) ,\
sendcount , sendtype , i , . . . , comm) ;

f o r (i = 0 , i < n ; i++)
MPI Recv (recvbuf + i ∗ recvcount ∗ extent (recvtype) , \

recvcount , recvtype , i , . . . , comm) ;

As we can see here there is no chance to other process to compete for memory
or CPU resources.

The latency and round trip benchmarks show a similar performance all the
time despite the Operating System running . For MPI the definition of latency
is the time to launch a message in the network’s buffer:

Algorithm:

i f (am i the master ())
{

6

TIMER START;
f o r (i =0; i<cnt ; i++)
{

i f (f l u s h & FLUSH BETWEEN ITERATIONS)
f l u s h a l l (1) ;

mp send (dest rank , 1 , sendbuf , bytes) ;
}
TIMER STOP;
mp recv (dest rank , 2 , destbuf , 4) ;
t o t a l = TIMER ELAPSED;
t o t a l −= c a l i b r a t e c a c h e f l u s h (cnt) ;
r e turn (t o t a l /(double) cnt) ;

}

The low performance (either in Clear Linux or Fedora) is an expected be-
havior. Embedded systems have traditionally been much more sensitive to both
the interrupt latency and Central Processing Unit (CPU) overhead involved in
servicing interrupts as compared to conventional Personal Computers (PC).

8 Conclusion

This case of study demonstrate not only the capability of an embedded plat-
form (Intel R© AtomTM Processor E3825 - Minnowboard) to execute a heavy
MPI workload , but the capability for the Clear Linux system to maintain a
better performance (even with high volume packages) than a none customized
OS. After this case of study we demonstrate that an embedded system with a
customized OS might be useful for HPC applications, however the latency is a
major problem that require HW reconfiguration.

Future work will will be to start the measurement of power consumption.
This might be a key characteristic that make the embedded systems a possi-
bility to establish parallel/distributed programming paradigms to facilitate the
development of distributed embedded applications.

9 References

References

[1] Hennessy, J., & Patterson, D. (2007). Computer architecture a quantitative
approach (4th ed.). Amsterdam: Elsevier/Morgan Kaufmann.

[2] Amdahl, G. (n.d.). Validity of the Single Processor Approach to Achieving
Large Scale Computing Capabilities, Reprinted from the AFIPS Conference
Proceedings, Vol. 30 (Atlantic City, N.J., Apr. 18-20), AFIPS Press, Reston,
Va., 1967, pp. 483-485, when Dr. Amda. IEEE Solid-State Circuits Newslet-
ter, 19-20.

[3] Mattson, T., & Sanders, B. (2005). Patterns for parallel programming.
Boston: Addison-Wesley.

7

[4] M. Saldana, A. Patel, C. Madill, N. D., A. Wang, A. Putnam, R . Wittig,
and P. Chow, “MPI as an abstraction for software-hardware interaction for
HPRCs,” in International Workshop on High-Performance Reconfig-F urable
Computing Technology and Applications , Nov. 2008, pp. 1–10.

[5] T. P. McMahon and A. Skjellum, “eMPI/eMPICH: Embedding MPI” in
MPI Developers Conference , 1996, pp. 180–184.

[6] J. Rico-Gallego, J. Alvarez-Llorente, F. Perogil-Duqu e, P. Antunez-Gomez,
and J. Diaz-Martin, “A Pthreads-Based MPI-1 Implementation for MMU-
Less Machines,” in International Conference on Reconfigurable Computing
and FPGAs , Dec. 2008, pp. 277–282.

[7] J. Liu, MPI for Embedded Systems: A Case Study. 2003

[8] Sinha, P. (1997). Distributed operating systems: Concepts and design. New
York: IEEE Press.

[9] Intel R© AtomTM Processor E3825 SPECIFICATIONS. (n.d.). Re-
trieved from ARK Intel:http://ark.intel.com/products/78474/
Intel-Atom-Processor-E3825-1M-Cache-1_33-GHz

8

http://ark.intel.com/products/78474/Intel-Atom-Processor-E3825-1M-Cache-1_33-GHz
http://ark.intel.com/products/78474/Intel-Atom-Processor-E3825-1M-Cache-1_33-GHz

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 1 32 1024 32768 1.04858e+06 3.35544e+07

K
B

/s
ec

Message Size in Bytes

Performance of MPI Allreduce

"minnow-clr-x86_64_mpi_allreduce.dat"
"minnow-fedora-x86_64_mpi_allreduce.dat"

10 Appendix

Figure 1: All reduce minnowboard

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1 32 1024 32768 1.04858e+06 3.35544e+07

K
B

/s
ec

Message Size in Bytes

Performance of MPI Alltoall

"minnow-clr-x86_64_mpi_alltoall.dat"
"minnow-fedora-x86_64_mpi_alltoall.dat"

Figure 2: All to all minnowboard

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 1 32 1024 32768 1.04858e+06 3.35544e+07

K
B

/s
ec

Message Size in Bytes

Unidirectional MPI Bandwidth

"minnow-clr-x86_64_mpi_bandwidth.dat"
"minnow-fedora-x86_64_mpi_bandwidth.dat"

Figure 3: Bandwith on minnowboard

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 1 32 1024 32768 1.04858e+06 3.35544e+07

K
B

/s
ec

Message Size in Bytes

Bidirectional MPI Bandwidth

"minnow-clr-x86_64_mpi_bibw.dat"
"minnow-fedora-x86_64_mpi_bibw.dat"

Figure 4: Bidirectional Bandwidth minnowboard

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 1 32 1024 32768 1.04858e+06 3.35544e+07

K
B

/s
ec

Message Size in Bytes

Performance of MPI Broadcast

"minnow-clr-x86_64_mpi_broadcast.dat"
"minnow-fedora-x86_64_mpi_broadcast.dat"

Figure 5: Broadcast minnowboard

 1

 4

 16

 64

 256

 1024

 4096

 16384

 65536

 1 32 1024 32768 1.04858e+06 3.35544e+07

M
ic

ro
se

co
nd

s

Packet Size in Bytes

Latency of MPI Send

"minnow-clr-x86_64_mpi_latency.dat"
"minnow-fedora-x86_64_mpi_latency.dat"

Figure 6: Application latency or Gap time on minnowboard

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

 1.04858e+06

 1 32 1024 32768 1.04858e+06 3.35544e+07

T
ra

ns
ac

tio
ns

/s
ec

Packet Size in Bytes

Roundtrip time of MPI Send

"minnow-clr-x86_64_mpi_roundtrip.dat"
"minnow-fedora-x86_64_mpi_roundtrip.dat"

Figure 7: Roundtrip or 2 * Latency on minnowboard

	Abstract
	Introduction
	Theoretical Framework
	Objective
	Justification
	Development
	Results
	Conclusion
	References
	Appendix

