
NREIS, MAY 2016 1

Deep Learning
Nolan Reis

Abstract—Deep learning is a fast growing field in tech that is often described to have limitless potential. This paper
describes its history, why the explosion in popularity, and how it works. An example of classifying images of handwritten
digits (MNIST) will be explored using a fully connected network and a convolutional neural network. Next, a brief
description of the tools necessary for the reader to implement his or her own network. Finally, a view of the state of the
art being developed by companies such as Google, Facebook, and Baidu.

F

1 TRENDY

D EEP learning (DL) is one of the hottest
terms in tech right now. Companies like

Facebook, Google, YouTube, Tesla, Spotify,
Yelp, and Microsoft are investing heavily into
this tool. So what is it? The secret is that deep
learning is just a re-branding of artificial neu-
ral networks (ANN), which have been around
since the 1960s.

2 HISTORY

The earliest deep learning-like algorithms were
invented by Ivakhnenko and Lapa in 1965. A lot
of work and innovation happened in the 1980s
(Fukushima’s convolutional nueral networks)
and 1990s (LeCunn’s LeNet). [1] Many of these
techniques are still used today. However, back
then computers were slow and data sets were
tiny. Researchers did not find many applica-
tions for neural networks (NN), so during the
2000’s research dropped off. It was not until the
last few years did NN make a resurgence.

The big shift was due to increased compu-
tational power and increased data. First was
the introduction of the graphics processing unit
(GPU). GPUs increased the computational pro-
cessing speed by a factor of 1000 in the span
of 10 years. [1] The second reason for NN’s
comeback was the exponential rise in data.
Technology has allowed us to store more data
and the internet has allowed us to share that
data.

The combination of exponential technology
and data has allowed deep learning to break
record after record.

• Speech Recognition: In 2009, Microsoft
and Toronto University improved
speech recognition by 30% using DL. [2]

• Computer Vision: There is a yearly com-
petition called ImageNet where teams
compete to classify a library of 14 mil-
lion images into 20,000 categories. In
2012, Alex Krizhevsky and Geoff Hinton
submitted a deep learning algorithm,
AlexNet, which achieved an error rate of
15% (40% better than state of the art). [3]

• Drug Discovery: In 2011, Geoff Hinton
and a team from Toronto University won
the ”Merck Molecular Activity Chal-
lenge” for automatic drug discovery.
They used deep learning to determine
which molecule was most likely to be
an effective drug agent. The amazing
thing was that nobody on the team had a
background in chemistry, biology, or life
science and they did it in two weeks. [2]

3 CORE CONCEPTS

3.1 Machine Learning 101

Machine learning is a subfield of computer
science where computers have the ability to
learn from experience instead of being explic-
itly programmed. First we take some data, train
a model off that data, then use that model to

NREIS, MAY 2016 2

make predictions on brand new data. Training
is analogous to how humans learn. The model
is exposed to new data, makes a prediction, and
gets feedback about how accurate its prediction
was. It uses that feedback to correct errors in-
side the model.1 This process is repeated step
by step multiple times through the entire data
set.

The input data has n observations and m
features. Features are attributes about the input
data. For example, take a bank. There are n cus-
tomers who have m features such as does some-
one have a checking account? How much money is
in that account?

Machine learning models have the ability to
predict either continuous values (How much will
someone spend per month?) or classify k discrete
values (will someone open a savings account?).
These discrete values are referred to as classes.
In the classification example, the output has
k = 2 classes (yes or no). This paper will focus
on classification.

3.2 Feature Engineering

Feature engineering is the process of using do-
main knowledge of data to extract useful fea-
tures or patterns to make machine learning
easier. For example, say you were training a
model to predict if a photo was taken indoors
or outside. You know that the sky is blue and so
the percentage of blue pixels might be a good
indicator (feature). By engineering that feature
ahead of time, the model does not have to learn
that the sky is in fact blue. This reduces the
number of classes the model needs to consider
(percentage of blue pixels vs. sky is blue or
green or white). Examples of feature extractors
for images are SIFT, HOG, RIFT.

While feature engineering is still a very im-
portant skill, it has its drawbacks. It requires
expert knowledge of the problem, it can be
very problem specific, and it takes a lot of hand
tuning - which is time consuming.

1. In contrast, unsupervised learning eliminates the feedback
portion and looks for unlabeled underlying structure.

3.3 Feature Learning
Feature learning is the process in which the
algorithm autonomously finds distinguishing
patterns, extracts them, and then feeds them
to the classification layer. In other words, fea-
ture learning is feature engineering done au-
tomatically by algorithms. In deep learning,
convolutional neural networks [CovNet] form a
hierarchy of abstraction that grow in complex-
ity (blobs→edges→eyes, noses, ears → face),
see Fig 1. The final layer takes this generated
feature and uses it for classification. [4]

Fig. 1: Learned hierarchical feature learned by
Deep Learning algorithm [4]

4 LOGISTIC CLASSIFIER

The next two sections are going to explain the
theory behind deep learning by starting with
a logistic classifier and evolving it into a deep
network. The purpose of a logistic classifier is
predict a categorical class, given input data. Is
this an image of a 5? or a 4?

Throughout all of deep learning the funda-
mental ingredients are a) Data b) Structure c)
Loss and d) Optimizer

4.1 Data
As with all supervised machine learning algo-
rithms, it is important to split the data into three
sets: training, validation, testing. Normally, the
data is split into 70% training, 20% validation,
and 10% testing.

The training and validation sets are used
during training. The training set is used to ad-
just the weights of the model. While the valida-
tion set does not update the weights, it is used
to validate that the model is not overfitting.
Overfitting is when a model is overly complex
- it has superfluous freedom to align with the
specific data.

NREIS, MAY 2016 3

Overfitting can be seen in the following
analogy. A student, analogous to our network
model, takes two exams of the same subject
repeatedly. Over many trials the student will
improve. However, if the student’s accuracy
increases on Test 1 but not on Test 2, then he
may be memorizing the answers, not learning
the material. The same is true for our model. It
could be overfitting the training data and not
learning the underlying relationship.

The test set is new, unseen data that is only
used for testing the final model’s predictive
power. To follow the student analogy, the test
set is the real world.

4.2 Structure
4.2.1 Neuron or Node
The basic building block of a network is the
neuron or node (Fig 2). It takes some input
data, applies a linear function to those inputs
by calculating a weighted sum, and applies an
activation function to that sum.

Fig. 2: Neuron or node: Basic unit of Deep
Learning

The linear function is defined as

WX + b = Y (1)

where X denotes an input vector, W denotes
a matrix of weights, b denotes the biases, and
Y denotes the scores or logits. The training hap-
pens by trying to find the weights and biases
that are good at predicting the correct class. For
example, take a model that is trying to learn
handwritten digits with an input as an image
of a handwritten ”5.” The linear function (Fig
3) takes that input and outputs logits. At first
these outputs do not mean much. The task is

to determine the probability the image belongs
to each class (digit). The way to turn logits
into probabilities is to apply a softmax as our
activation function, see Fig 4.

Fig. 3: Linear Function

Fig. 4: To turn logits into probabilities, the acti-
vation function was chosen to be softmax

The softmax function outputs the probabil-
ities the image belongs to each class (the most
likely is close to 1 and the less likely are close
to 0). The technique of One-hot Encoding is
used to turn each label into a class-membership
vector. This vector has the value 1 for the correct
class, and 0 for the rest of entries. In the above
example, the five is the correct label, so the one-
hot encoded vector is [0,0,1].

There are now two vectors, one from the
classifier (the probabilities) and one that rep-
resents the correct label (encoded vector).

4.3 Loss

For the feedback in the model to work, there
must be a metric of success. The way to mea-
sure the distance between potential two vectors
is called Cross Entropy, Eq 2. The goal is to have

NREIS, MAY 2016 4

a low distance for a correct class but a high
distance for an incorrect one.

D(S(Y), L)) =
∑
k

Lklog(S(Yk))) (2)

The Training Loss, Eq 3, is defined as the aver-
age cross entropy over the entire training set (i).
A good model has a low training loss.

L =
1

N

∑
i

D(S(WXi + b)), Li) (3)

The loss is a function of the weights and the bi-
ases, so we are going to minimize that function
using an optimizer. [5]

4.4 Optimizer
One of the most popular optimizing techniques
in machine learning is called Stochastic Gradi-
ent Descent (SGD). It takes small steps along
the loss surface following the gradient until it
finds a minimum. Recall the gradient is the
multivariate slope of a function. The size of
the step is called the learning rate. The bigger
the learning rate the faster it learns, but it may
not reach the absolute minimal loss. In practice,
SGD is performed over multiple passes of the
data set called epochs.

SGD is popular in machine learning be-
cause it scales well with data and model
size. However, it comes with additional hyper-
parameters. These are different from ordinary
parameters that the model optimizes. Examples
of hyper-parameters that the user must tune
are:

• Learning Rate initialization
• Learning Rate decay
• Weight initialization
• Number of Epochs

4.5 Summary
To summarize, we have created a linear model
that outputs probabilities [structure]. We eval-
uate how the model is doing by calculating the
cross entropy [loss] and use SGD [optimizer] to
minimize that loss. It is still a shallow model,
but these are the fundamental tools for going
deeper.

5 DEEP LEARNING

5.1 MultiLayer Perceptron [MLP]
To turn the logistic classifier into a network, a
second neuron is linked between the current
neuron and the input (Fig 5). This is called a
two-layer Neural Network (the input layer is
not counted).

Layers are the highest level building block
of a network. The new layer is called the Hid-
den Layer because its output values are not
visible to the network output. The hidden layer
gives the model the opportunity to represent
the data in a simpler way.

The depth of the network is defined by the
number of hidden layers.

Fig. 5: Basic two layer Neural Network

In addition to layers, the number of nodes
per layer can increase as well. The number
of nodes on a layer represents the degree of
freedom of that layer.

When the output of every node on one layer
is connected to the input of every node on the
next layer, the network is called Fully Connected
or Dense.

The size of a network is defined by the
number of layers and the number of nodes or
parameters. Fig 6a has 2 layers, 4+2=6 nodes
(do not count input) or [3x4]+[4x2] = 20 weights
and 4+2=6 biases for a total of 26 parameters.
Fig 10b has 3 layers, 9 nodes, and 42 learnable
parameters.

Modern convolutional neural networks
have 100 million parameters and 20 layers
(hence deep learning).

Evolving the structure from a single node
into a network has allowed the model more

NREIS, MAY 2016 5

(a) 2-Layer (b) 3-Layer

Fig. 6: Two Fully connected Neural Networks
[6]

opportunities to represent the data in a sim-
pler way (layers) and more degrees of freedom
(nodes). However, the model is still linear. Be-
cause of superposition, stacking a 100 purely
linear transformations can be simplified to a
single layer. The solution is to introduce non-
linear functions.

5.2 Non-Linearities
To preserve the network’s structure (and the
benefits gained with this structure), each hid-
den layer is given a non-linear activation func-
tion. By adding non-linearity, the entire model
is now non-linear and cannot be simplified
down to a single transformation. This creates
a hierarchy of abstraction that grows in com-
plexity with every layer. [4] [7]

This is the foundation for building deep
models.

There are multiple types of non-linear ac-
tivation functions: softmax, sigmoidal/logistic,
tanh, and the rectified linear unit [ReLU]. A
ReLU is a very simple, very powerful non-
linearity. Its output is linear for x greater than
zero and zero everywhere else (Fig 7). Since its
introduction in 2012, ReLu has become the most
popular non-linearity because it does not face
gradient vanishing problems as with sigmoid
and tanh function. [7]

5.3 Summary
By constructing this MLP network we have
given the model a better structure

• Hidden Layers - number of moves to
figure out a simpler way to represent the
data

Fig. 7: Rectified Linear Unit is the most popular
nonlinear function.

• Number of nodes per hidden layer - the
degrees of freedom for that move

• Non-linearities allow increasing feature
complexity with each layer

We then told the network to learn the best
parameters in order to correctly classify the
input. This is the core to Deep Learning. [5] [7]
[8]

6 CONVOLUTIONAL NEURAL
NETWORKS

Deep networks are powerful but can quickly
increase in complexity. Back to the example
of classifying handwritten digits. If the input
image is 32x32 pixels with 3 colors and the
network has 2 fully connected layers with 2
outputs (similar to Fig 6a) then there would be a
total of 9.4 millions learnable parameters. That
is a lot of parameters for a small image and
a simple structure. To help out the model, the
user can use his or her domain knowledge (the
fact that it is an image).

Take an image of a cat. It does not matter
where in the image the cat is, it is still an image
of a cat. This is called translational invariance.
Identifying invariant structure is a key aspect in
machine learning because it is a direct path to
efficient learning. In a fully connected network,
the model learns weights for cats in the right
corner and different weights for cats in the left
corner. Instead, the user would like the model
to learn features by sharing weights across the
entire image. This is called convolutions.

NREIS, MAY 2016 6

6.1 Convolutions
Fig 8 is an example of an input image (X) with
a cat in it. The image has a width, height, and
a depth (represented by the RGB colors). Take a
small patch of the image and run a tiny neural
network on it with k outputs. Sliding that patch
across the entire image creates a new image
with a new width, height, and a depth of k.
If the patch was the size of the original image,
it would be no different than a fully connected
layer. However, by sweeping a smaller patch
across the image there are fewer weights and
the weights are shared across space.

Fig. 8: Sketch of how a Convolution passes over
an image [5]

6.2 Network
Convolutions are stacked on top of each other
to form a convolutional pyramid, Fig 9. The
layers progressively squeeze the spatial dimen-
sions, while increasing the network depth. The
depth can be thought of as the semantic repre-
sentation. At the end, a fully connected classi-
fier is attached. Through training, these convo-
lutional layers form the hierarchy of abstraction
seen in Fig 1. [5] [7]

Fig. 9: Structure of a ConvNet [5]

7 EXAMPLE: MNIST

The challenge of classifying handwritten dig-
its is a classic machine learning problem. The
dataset used is called MNIST and it was one of
the first real world problems solved by neural
networks.

7.1 Data

MNIST contains 60,000 training images and
10,000 test images of handwritten digits from
500 different writers. Each image is a grey scale
28x28 pixel image. 10% of the training data was
reserved for validation.

7.2 Structure

Two structures were evaluated: MultiLayer Per-
ceptron [MLP] and a ConvNet.

7.2.1 MLP

A 2-Layer Perceptron [MLP] was built with
fully connected layers. The input was an im-
age flattened to a vector of length 784 (28x28).
This input was fully connected to a hidden
layer with 512 nodes with a ReLU activation
function. The hidden layer was fully connected
to the output layer of length 10 (0-9) with a
softmax.2

7.2.2 ConvNet

The input image was kept in its original form
1x28x28. It was inputted into two convolutional
layers which squeezed it to a shape of 32x14x14.
That image was fed into the same MLP classi-
fier as described above.

7.3 Loss and Optimizer

Both models defined the loss as cross entropy
and used RMSprop as their optimizer. [RM-
Sprop is a version of SGD with an adaptive
learning rate].

2. Dropout was applied to combat overfitting

NREIS, MAY 2016 7

7.4 Results
The results are shown in the Table 1 below.
Both algorithms performed excellent. Out of the
10,000 test points, the MLP missed 188. The
ConvNet misclassified only 93; it was twice as
accurate in half the number of epochs. Fig 10
shows the loss curves for each, demonstrating
that neither model overfit the training data. The
time per epoch was listed because this example
was done on the author’s personal computer
(2014 13in Macbook Pro running OS X 10.11.4,
2.6GHz 8GB, Intel Iris 1536MB). At the time
of purchase, the author had no intention of
demanding more than basic performance from
his machine. Had this experiment been run on
a GPU the training time would have been an
order of magnitude faster.

TABLE 1: Results from Classifying MNIST

Accuracy
Epochs time per Epoch [s] Training Set Validation Set Test Set

MLP 10 10 0.9822 0.9828 0.9812
CNN 5 360 0.9928 0.9915 0.9907

(a) MLP (b) ConvNet

Fig. 10: Loss as a function of epoch. The fact
that the training and validation losses converge
is evidence that the model is not overfitting

8 TOOLS

The good news is that the field of DL is explod-
ing and a majority of it is open-source. The bad
news is that this field is in its infancy so there
are a lot of options and it is difficult to configure
your system.

8.1 Programming
Deep learning is programmed in mostly Python
or C++. Since it is just math, one can program

all of the operations from scratch. However,
many common functions have been built into
open-source toolkits. The community has not
consolidated yet, so there are over 50 different
toolkits, each with its advantages and disad-
vantages. The most popular include

• TensorFlow
• Keras
• Theano
• Caffe
• Torch
• CNTK

Google open-sourced its toolkit called Ten-
sorFlow and it has gained a lot of traction in the
six months since its release (November, 2015). It
is a very powerful toolkit that they are writing
all of their algorithms on.

The best place to start is a toolkit called
Keras. It is built to run on top of TensorFlow
or Theano. The purpose of this toolkit is to
enable fast, easy prototyping. While it is not as
powerful as other options it allows beginners to
get their hands dirty quickly. 3

In addition to toolkits, existing pre-trained
networks are usually open-sourced. Winning
networks, such as AlexNet (the first ConvNet
submitted to ImageNet), open-source their
learned parameters and structure.

8.2 Transfer Learning

One of the continuing limitations of DL is data.
While the amount of data is increasing expo-
nentially, getting good, clean data is hard to
come by. Large corporations like Facebook or
Google can pay for manual labeling of data,
but everyone else uses shared data sets like
MNIST over and over again. Few DL models
are trained from scratch. It is logical to assume
that is would stall innovation; however, this
is not true. It has been shown that CovNets
learned from large data sets can learn generic
features and be repurposed for other smaller
databases. [9]

3. It is this author’s opinion that creating an environment
inside anaconda was the most successful way to get started.

NREIS, MAY 2016 8

Fig. 11: The structure of AlexNet [10]

8.2.1 Fine Tuning

Take a ConvNet pre-trained on ImageNet and
cut off the last fully connected layer (that clas-
sifies the 1000 classes defined by ImageNet).
Retrain the CovNet by fine-tuning the existing
weights for this new dataset. Essentially, the
original weights are used as an initialization
for the new task. The motivation behind this
strategy is that the lowest levels of the ConvNet
contain generic features (edge detector or blob)
that can be useful for many task; however,
later layers become progressively more specific
to the nuances of the classes for the original
dataset. For example, ImageNet has a number
of dog breeds, so AlexNet likely has a number
of later filters that can distinguish between the
breeds. [6]

8.3 Technology

As previously stated, the exponential rise in
computational power has enabled DL to grow
at an incredible rate. In the 2000s, researchers
recognized that the GPU inside gaming com-
puters was perfect for quickly multiplying very
large matrices. They originally rode the rise of
gaming computers, but lately, computer com-
panies, like Nvidia, have taken notice of DL
and begun building chips specifically designed
for DL. Deciding which GPU specifications is
beyond the scope of this report but there are
many resources for those who are interested.
[11]

It is this author’s opinion that if the reader
is planning to do deep learning, then he or
she should spend time researching a sufficient
computer. While it may be possible to train
models using CPUs, it is not practical. Even
basic GPUs are 10x faster, which means faster
iterating.

Another option is Amazon Web Services
[AWS]. A user can rent time on Amazon’s GPUs
to run an algorithm for a couple hours. This
is great for testing models out without the
investment in hardware.

Currently, most of DL is done on clusters of
GPUs by big companies and requires the cloud.
Movidius is trying to change that. Last month
they announced their Fathom Neural Compute
Stick - a modular deep learning accelerator in
the form of a standard USB stick. This chip
allows DL to be embedded in new places like
robots, drones, cameras, VR. The goal to able
to add a visual cortex to any device. This will
take the learning out of the cloud and allow the
devices to be more natively intelligent. [12] [13]

9 STATE OF THE ART

Here is a snapshot of the state of the art at
the time this report was written. (note: new
advances are announced almost every week)

9.1 Google

9.1.1 Google Photos [Sept 2014]
Google Photos is a downloadable app that
stores and learns the user’s photos in the cloud.
It is built off Google’s first place finish in the
2014 ImageNet: googLeNet. [14] The program
learns your friends through facial recognition,
as well as learns about photo context - this
allows for easy searching.

9.1.2 Deep Dream [July 2015]
The Google engineers wanted a way to visu-
alize what the network was visualizing on the
middle layers of googLeNet, so they invented
a technique called Inceptionism. The network
is fed an arbitrary image and asked to enhance
whatever it detected on a selected layer. Each
layer deals with a different level of abstraction,
so lower layers tend to produce strokes (Fig 12)
while higher levels identify more sophisticated
features (even objects), see Fig 13 and Fig 14.

This creates a feedback loop: if a cloud
looks a little bit like a bird, the net-
work will make it look more like a

NREIS, MAY 2016 9

bird. This in turn will make the net-
work recognize the bird even more
strongly on the next pass and so forth,
until a highly detailed bird appears,
seemingly out of nowhere. [15]

Fig. 12: Visualization of a lower layer produces
strokes [15]

Fig. 13: Visualization of a higher level produces
more complex objects [15]

Fig. 14: Zoomed in view of the sky visualization
in Fig 13 shows the advanced objects [15]

Due to their trippy, psychedelic nature the
engineers joke that this might be what a com-
puter brain’s daydreams might actually look
like. Google has open-sourced the code, Deep-
Dream, for anyone to create their own images.

Building off DeepDream, a paper [16] was
published using a ConvNet to factor images
into style and content. This allows the creation
of new images that combine the style of one
image with the content of another, Fig 15.

9.1.3 PlaNet [February 2016]
Google created a network, PlaNet, that has the
”superhuman” ability to determine the loca-
tion of almost any image. They trained a deep

Fig. 15: Using a NN to cross a photo with a
painting style: for example Neil deGrasse Tyson
in the style of Kadinskys Jane Rouge Bleu. [17]

learning network to work out the location of
a photo using only the image’s pixels. Their
approach was to divide the world into a grid of
26,000 squares. The size of those squares varied
based on the number of images taken in that
location. Big Cities had more fine-grained grid
structures; while oceans and the poles were
ignored. The data set consisted of 126M photos
with Exif geolocations mined from all over the
web (training: 91M; validation: 34M). To test the
model’s localization accuracy, they fed it 2.3M
geotagged Flickr photos from across the world,
see Fig 16.

PlaNet is able to localize 3.6% of the
images at street-level accuracy and
10.1% at city-level accuracy. 28.4% of
the photos are correctly localized at
country level and 48.0% at continent
level. [18]

Fig. 16: Google’s PlaNet geolocating a picture
in one of its 26,000 zones [19]

9.1.4 AlphaGo [March 2016]
In March 2016, Google’s AlphaGo won 4-1
against the Lee Sedol, the legendary Go cham-
pion for that last decade.

NREIS, MAY 2016 10

The game of Go is 2,500 year old Chinese
game. Players take turns placing black or white
stones on the board, trying to capture the op-
ponent’s stones or empty territory. The game
is incredibly complex with more possible posi-
tions than there are atoms in the universe. Go
is a googol times more complex than chess. The
game is played primarily through intuition and
feel.

In 1997 IBM’s DeepBlue beat the world
champion chess player using a brute force
method, Search Tree, to calculate all possible
positions. This is not possible with Go. Instead,
AlphaGo used a combination of Monte Carlo
Tree Search with deep neural networks to play
out the rest of the game in its imagination. Not
only was the match one sided, it was 10 years
before experts predicted a computer would win
at Go. [20] [21] [22]

9.1.5 SyntaxNet [May 2016]

Google just released SyntaxNet, an open-source
neural network framework that provides a
foundation for Natural Language Understand-
ing (NLU). Not only did they provide all
the code (written in TensorFlow) needed to
train models on individual data, they included
Parsey McParseface, an English parser that has
been pre-trained to analyze English text.

SyntaxNet is built off syntactic parsing.
Given a sentence as input, it tags each word as a
part-of-speech with its syntactic function. Then
it determines the syntactic relationship between
the words, which is related to the underlying
meaning of the sentence. Parsey McParseface
can handle complex sentences like Fig 17, this
allows users to ask questions like whom did Alice
see?, when did Alice see Bob?

Fig. 17: Parsey McParseface understanding a
sample sentence [23]

Unfortunately, natural language is full of
ambiguities. In a moderate length sentence (20-
30 words), there can be tens of thousands of
syntactic relationships. For example the follow-
ing sentence (Fig 18) can be read two ways.
First, the correct understanding is Alice is driv-
ing the car. The second (absurd, but possible)
interpretation is where the street is located in
the car. The preposition in can modify drove
or street, causing ambiguity. From our vast
experience, humans do a great job navigating
these ambiguous cases. SyntaxNet uses deep
learning.

Fig. 18: An example of a prepositional phrase
attachment ambiguity. [23]

Parsey McParseface understands sentences
from news articles with an accuracy of 94%.
On sentences scraped from the internet, Parsey
understands 90%.

The goal of Natural Language Understand-
ing is to make our interactions with computers
more natural. Instead of memorized phrases,
soon the user will be able to just talk with a
computer. [23] [24]

9.2 Facebook [2014]
Facebook AI Research (FAIR) is a research team
at Facebook advancing the field of machine
learning. One of their big projects was called
DeepFace. DeepFace performs facial verifica-
tion (it recognizes that two images show the
same face), not facial recognition (putting a
name to a face).

To derive a facial representation, they cre-
ated a nine-layer deep neural network. This
network involved more than 120 million pa-
rameters using several locally connected layers
but without the weight sharing as in standard
convolutional layers.

Using a dataset of 4 million photos of 4,000
individuals, DeepFace achieved a 97.25% accu-
racy at predicting if two images showed the

NREIS, MAY 2016 11

same person. This is remarkable result as it is
almost at human-level performance (97.53%).
[25] [26]

9.3 FaceYou [October, 2015]
FaceYou is an entertainment app that allows
users to merge their own face with another
face. It is able to capture facial expressions and
speech in real-time.

Baidu researchers developed FaceYou as a
demonstration to show the sophistication of
deep learning on a smartphone. Traditionally,
this level of real-time face tracking was only
possible on large systems used in film and
animation studios. [27] Another application of
this technology could be fashion. Instead of
merging two faces, a shirt or dress could be
projected onto a potential buyer.

Fig. 19: The author with a skeleton merged onto
his face

10 FUTURE OF DEEP LEARNING

By now it is clear that deep learning has incred-
ible potential. However, what makes DL special
from other machine learning techniques? Why
is it causing renowned scientists to make bold
claims?

Deep Learning is an algorithm which
has no theoretical limitations of what
it can learn; the more data you give
and the more computational time you
provide, the better it is
- Geoff Hinton [28]

Andrew Ng, Cofounder of Google Brain and
Chief Scientist at Baidu Research, describes it

with the following graph, Fig 20. While all
other machine learning algorithms get better
with more data, at some point their perfor-
mance plateaus. In deep learning, the expo-
nential growth of both data and computation
power allow models to evolve in structure and
complexity, thus increasing their performance.

Fig. 20: Andrew Ng’s slide about the immense
potential of DL over traditional machine learn-
ing algorithms [29]

11 SUMMARY

This paper described the history of deep learn-
ing and how it is just a rebranding of artificial
neural networks. However, the reason for DL’s
recent explosion in popularity is due to the
exponential growth of both computing power
and data.

Next, we walked through the foundation
of what makes a deep network: data, structure,
loss, and an optimizer. We built a multilayer
perceptron by adding nodes, layers, and non-
linearities to a simple logistic classifier. By using
domain knowledge (the input was an image),
we showed how convolutional neural networks
form a hierarchy of abstraction that grow in
complexity.

We talked about how tools like TensorFlow,
transfer learning, and GPUs can greatly in-
crease productivity when training DIY models.
We examined the state-of-art problems big com-
panies are solving using deep learning.

Finally, we explained why experts are claim-
ing the limitless potential of Deep Learning.

NREIS, MAY 2016 12

REFERENCES

[1] T. Dettmers. (2015) Deep learning in a nut-
shell: History and training. [Online]. Avail-
able: https://devblogs.nvidia.com/parallelforall/deep-
learning-nutshell-history-training/

[2] J. Markoff. (2012) Scientists see promise in deep learning
programs. [Online]. Available: http://www.nytimes.
com/2012/11/24/science/scientists-see-advances-in-
deep-learning-a-part-of-artificial-intelligence.html

[3] (2012). [Online]. Available: http://image-net.org/
challenges/LSVRC/2012/results.html

[4] T. Dettmers. (2015) Deep learning in
a nutshell: Core concepts. [Online]. Avail-
able: https://devblogs.nvidia.com/parallelforall/deep-
learning-nutshell-core-concepts/feature-engineering

[5] V. Vanhoucke. (2015) Udacity: Deep learning. [On-
line]. Available: https://www.udacity.com/course/deep-
learning--ud730

[6] F.-F. Li and A. Karpathy. (2016) Cs231n: Convolutional
neural networks for visual recognition. [Online].
Available: http://cs231n.stanford.edu/

[7] C. Mellina, “Deep learning workshop,” 2016.
[8] D. Smilkov and S. Carter. (2016) Tensorflow playground.

[Online]. Available: http://playground.tensorflow.org
[9] T.-Y. Lin, Y. Cui, S. Belongie, and J. Hays, “Learning deep

representations for ground-to-aerial geolocalization,” in
Computer Vision and Pattern Recognition (CVPR), 2015 IEEE
Conference on. IEEE, 2015, pp. 5007–5015.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,”
in Advances in Neural Information Processing Systems 25,
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
Eds. Curran Associates, Inc., 2012, pp. 1097–1105.
[Online]. Available: http://papers.nips.cc/paper/4824-
imagenet-classification-with-deep-convolutional-neural-
networks.pdf

[11] T. Dettmers. (2014) Which gpu(s) to get for deep learning:
My experience and advice for using gpus in deep
learning. [Online]. Available: http://timdettmers.com/
2014/08/14/which-gpu-for-deep-learning/

[12] A. Souppouris. (2016) Artificial intelligence now
fits inside a usb stick. [Online]. Avail-
able: http://www.engadget.com/2016/04/28/movidius-
fathom-neural-compute-stick/

[13] (2016) Embedded neural network com-
pute framework:fathom. [Online]. Avail-
able: http://www.movidius.com/solutions/machine-
vision-algorithms/machine-learning

[14] C. Szegedy. (2014) Building a deeper
understanding of images. [Online]. Avail-
able: http://googleresearch.blogspot.com/2014/09/
building-deeper-understanding-of-images.html

[15] A. Mordvintsev, C. Olah, and M. Tyka. (2015)
Inceptionism: Going deeper into neural networks.
[Online]. Available: http://googleresearch.blogspot.com/
2015/06/inceptionism-going-deeper-into-neural.html

[16] L. A. Gatys, A. S. Ecker, and M. Bethge, “A neural
algorithm of artistic style,” CoRR, vol. abs/1508.06576,
2015. [Online]. Available: http://arxiv.org/abs/1508.
06576

[17] M. Tyka. (2016) Exploring the intersection
of art and machine intelligence. [Online].
Available: http://googleresearch.blogspot.ca/2016/02/
exploring-intersection-of-art-and.html

[18] T. Weyand, I. Kostrikov, and J. Philbin, “Planet -
photo geolocation with convolutional neural networks,”
CoRR, vol. abs/1602.05314, 2016. [Online]. Available:
http://arxiv.org/abs/1602.05314

[19] (2016) Google unveils neural network with
superhuman ability to determine the location
of almost any image. [Online]. Available:
https://www.technologyreview.com/s/600889/google-
unveils-neural-network-with-superhuman-ability-to-
determine-the-location-of-almost/

[20] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. van den Driessche, J. Schrittwieser, I. Antonoglou,
V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,
J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap,
M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489,
01 2016. [Online]. Available: http://dx.doi.org/10.1038/
nature16961

[21] (2016). [Online]. Available: https://deepmind.com/
alpha-go

[22] D. Silver and D. Hassabis. (2016) Alphago: Mastering
the ancient game of go with machine learning. [Online].
Available: http://googleresearch.blogspot.com/2016/01/
alphago-mastering-ancient-game-of-go.html

[23] S. Petrov. (2016) Announcing syntaxnet: The worlds
most accurate parser goes open source. [Online].
Available: http://googleresearch.blogspot.com/2016/05/
announcing-syntaxnet-worlds-most.html

[24] D. Andor, C. Alberti, D. Weiss, A. Severyn, A. Presta,
K. Ganchev, S. Petrov, and M. Collins, “Globally
normalized transition-based neural networks,” CoRR,
vol. abs/1603.06042, 2016. [Online]. Available: http:
//arxiv.org/abs/1603.06042

[25] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface:
Closing the gap to human-level performance in face ver-
ification,” in 2014 IEEE Conference on Computer Vision and
Pattern Recognition, June 2014, pp. 1701–1708.

[26] T. Simonite. (2014) Facebook creates software that
matches faces almost as well as you do. [Online].
Available: https://www.technologyreview.com/s/
525586/facebook-creates-software-that-matches-faces-
almost-as-well-as-you-do/

[27] (2015) Happy halloween! baidu research introduces
faceyou. [Online]. Available: http://research.baidu.com/
happy-halloween-baidu-research-introduces-faceyou/

[28] P. Pallath. (2015) Making the most of predictive analytics:
Exploring deep learning. [Online]. Available: http:
//blog-sap.com/analytics/2015/06/11/making-the-
most-of-predictive-analytics-exploring-deep-learning/L

[29] A. Ng, “2015 extract data conference: What data scientists
should know about deep learning.”

NREIS, MAY 2016 13

APPENDIX A
MLP CODE FOR LEARNING MNIST

#−−−−−−MNIST − MLP
#MNIST : g r a y s c a l e hand−w r i t t e n d i g i t s 28 x28 p i x e l s .
t h e r e a r e 10 c l a s s e s in t h e d a t a s e t c o r r e s p o n d i n g t o t h e d i g i t s 0−9.

import m a t p l o t l i b . pyplot as p l t
import numpy as np

from keras . d a t a s e t s import mnist
from keras . models import Sequent ia l
from keras . l a y e r s . core import Dense , Dropout , Act iva t ion
from keras . opt imizers import SGD, Adam, RMSprop
from keras . u t i l s import n p u t i l s

l o a d t h e d a t a and s p l i t i t i n t o t r a i n and t e s t s e t s

(X train , y t r a i n) , (X test , y t e s t) = mnist . load data ()
print X tra in . shape

#show a random example
p l t . imshow (X tra in [np . random . randint (len (X tra in))] , cmap= ’ Greys ’)

f l a t t e n t h e 28 x28 images t o a 784 d i m e n s i o n a l v e c t o r .
X tra in = X tra in . reshape (60000 , 784)
X te s t = X te s t . reshape (10000 , 784)
X tra in = X tra in . astype (’ f l o a t 3 2 ’)
X te s t = X te s t . astype (’ f l o a t 3 2 ’)
X tra in /= 255
X te s t /= 255
print (X tra in . shape [0] , ’ t r a i n samples ’)
print (X te s t . shape [0] , ’ t e s t samples ’)

e n c o d e our l a b e l s a s one−h o t v e c t o r s .
y t r a i n = n p u t i l s . t o c a t e g o r i c a l (y tra in , 10)
y t e s t = n p u t i l s . t o c a t e g o r i c a l (y tes t , 10)

f u n c t i o n t o p l o t t h e T r a i n i n g Los s
def p l o t l o s s (h i s t) :

l o s s = h i s t . h i s t o r y [’ l o s s ’]
v a l l o s s = h i s t . h i s t o r y [’ v a l l o s s ’]
p l t . p l o t (range (l e n (l o s s)) , l o s s)
p l t . p l o t (range (len (l o s s)) , loss , ’ b ’ , va l l o s s , ’ r ’)
p l t . legend ([’ l o s s ’ , ’ v a l l o s s ’])

NREIS, MAY 2016 14

MLP

− − −C o n s t r u s t t h e MLP s t r u c t u r e
model = Sequent ia l ()
model . add (Dense (5 1 2 , input dim =784)) #784 = 28 x28 i n p u t ; and 512 nodes
model . add (Act iva t ion (’ r e l u ’)) # d e f i n e t h e a c t i v a t i o n func as ’RELU ’
model . add (Dropout (. 5)) # add d r o p o u t with a p r o b a b i l i t y o f 50%
model . add (Dense (1 0)) # add a f u l l y c o n n e c t e d l a y e r with 10 o u t p u t s (0−9 d i g i t s)
model . add (Act iva t ion (’ softmax ’))

model . summary () # p r i n t out s t r u c t u r e

d e f i n e LOSS and OPTIMIZER
model . compile (l o s s = ’ c a t e g o r i c a l c r o s s e n t r o p y ’ ,

opt imizer= ’ rmsprop ’ ,
metr i cs =[’ accuracy ’])

h i s t o r y = model . f i t (X train , y tra in , nb epoch =10 ,
b a t c h s i z e =128 , verbose =1 ,
v a l i d a t i o n s p l i t = 0 . 1)

p l o t l o s s (h i s t o r y)

F i n a l t e s t e v a l u a t i o n
score = model . evaluate (X test , y tes t , verbose =0)
print (’ Test score : ’ , score [0])
print (’ Test accuracy : ’ , score [1])

NREIS, MAY 2016 15

APPENDIX B
COVNET PYTHON CODE FOR LEARNING MNIST

#
C l a s s i f y i n g MNIST with CNNs
#

import m a t p l o t l i b . pyplot as p l t
import numpy as np

from keras . d a t a s e t s import mnist
from keras . models import Sequent ia l
from keras . opt imizers import SGD, RMSprop
from keras . u t i l s import n p u t i l s

FORMAT INPUT DATA
Keep the data in i t s o r i g i n a l shape .
note : when we reshape the data below , we add a dimension of 1 .
t h i s i s the number of ∗∗ channels ∗∗ in the image ,
which i s j u s t 1 because these are gr ay sc a l e images .
I f they were color , t h i s would be 3 f o r RGB.

(X train , y t r a i n) , (X test , y t e s t) = mnist . load data ()

X tra in = X tra in . reshape (X tra in . shape [0] , 1 , 28 , 28)
X te s t = X te s t . reshape (X te s t . shape [0] , 1 , 28 , 28)
X tra in = X tra in . astype (’ f l o a t 3 2 ’)
X te s t = X te s t . astype (’ f l o a t 3 2 ’)
X tra in /= 255
X te s t /= 255
p r i n t X tra in . shape

y t r a i n = n p u t i l s . t o c a t e g o r i c a l (y tra in , 10)
y t e s t = n p u t i l s . t o c a t e g o r i c a l (y tes t , 10)

funct ion to p l o t the Training Loss
def p l o t l o s s (h i s t) :

l o s s = h i s t . h i s t o r y [’ loss ’]
v a l l o s s = h i s t . h i s t o r y [’ va l l o s s ’]
p l t . p l o t (range (len (l o s s)) , l o s s)
p l t . p l o t (range (len (l o s s)) , loss , ’b ’ , v a l l o s s , ’ r ’)
p l t . legend ([’ loss ’ , ’ va l l o s s ’])

from keras . l a y e r s . core import Dense , Dropout , Act iva t ion

NREIS, MAY 2016 16

from keras . l a y e r s import Convolution2D , MaxPooling2D , AveragePooling2D , F l a t t e n

numb labels = 10
#
design s t r u c t u r e of CNN###
model = Sequent ia l ()
model . add (Convolution2D (3 2 , 3 , 3 , border mode = ’same ’ , input shape =(1 , 28 , 2 8) , subsample = (1 , 1) , a c t i v a t i o n = ’ relu ’))
#2 x2 pooling cuts in image in h a l f
model . add (MaxPooling2D (pool s ize =(2 , 2) , s t r i d e s =None , border mode = ’same ’))
model . add (Convolution2D (3 2 , 3 , 3 , border mode = ’same ’))
model . add (Act iva t ion (’ relu ’))

model . add (F l a t t e n ())
model . add (Dense (5 1 2))
model . add (Act iva t ion (’ relu ’))
model . add (Dropout (. 4))
model . add (Dense (numb labels))
model . add (Act iva t ion (’ softmax ’))

model . summary ()

def ine LOSS and OPTIMIZER
model . compile (l o s s = ’ c a t e g o r i c a l c r o s s e n t r o p y ’ ,

opt imizer = ’rmsprop ’ ,
metr i cs =[’ accuracy ’])

h i s t o r y = model . f i t (X train , y tra in , nb epoch =5 ,
b a t c h s i z e =128 , verbose =1 ,
v a l i d a t i o n s p l i t = 0 . 1)

p l o t l o s s (h i s t o r y)

score = model . evaluate (X test , y tes t , verbose =1)
p r i n t (’ Test score : ’ , score [0])
p r i n t (’ Test accuracy : ’ , score [1])

Saving a t r a i n e d model
with open (’ mnist cnn . json ’ , ’w’) as f :

f . wri te (model . t o j s o n ())

model . save weights (’ mnist cnn weights . h5 ’)

