DATA STRUCTURE = Linked List

soni200032

June 2019

1 Introduction

 * A linked list is a linear data structure, in which the element are not stored at contiguous memory location.

* It consists of group of nodes in a sequence.

In simple words, a linked list consists of nodes where each node contains a data field and a reference (link) to the next node in the list.

* Linked lists are used to create Trees and Graph.

* The element in a linked list are linked using pointer As shown in Figure.

2 Advantages of Linked Lists

* They are dynamic in nature which allocates the memory when required.

- * Insertion and deletion operation can be easily implemented.
- * Linked List reduces the access time.

3 Disadvantages of Linked Lists

* The memory is wasted as pointer require extra memory for storage.

* No element can be accessed randomly; it has to access each node sequentially.

* Reverse Traversing is difficult in linked list.

4 Applications of Linked Lists

* Linked lists are used to implement stacks, queues, graphs, etc.

* Linked lists let you insert elements at the beginning and end of the list.

* In Linked Lists we don't need to know the size in advance.

5 The Operations on the Linked Lists

* Search: This operation involves the searching of an element in the linked list.

* Insertion: To add new node to data structure.

* Deletion: To delete a node from data structure.

* Merge: To merge two structures or more to constituting one structure.

6 Types Of Linked Lists

There are four different implementations of linked list available, they are as follows.

- 6.1. Singly Linked List.
- 6.2. Doubly Linked List.
- 6.3. Circular Singly Linked List.
- 6.4. Circular Doubly Linked List.

6.1 Singly Linked List

* Singly linked list contain nodes which have a data part as well as an address part i.e, next: which points to the next node in sequence of nodes.

* The operation we can perform on singly linked list are insertion, and deletion, As shown in Figure.

6.2 Doubly Linked List

* In a doubly linked list, each node contains a data part and two addresses, one for the previous node and other one for the next node, As shown in Figure.

6.3 Circular Singly Linked List

 \ast In circular singly linked list the last node of the list holds the address of the first node hence forming a circular chain, As shown in Figure.

6.4 Circular Doubly Linked List

* In circular doubly linked list the forward node points to the first node and backward pointer of the first node points to the last node, As shown in Figure.

A very helpfull reference is [1].

References

 Paul F Dietz. Maintaining order in a linked list. In Proceedings of the fourteenth annual ACM symposium on Theory of computing, pages 122–127. ACM, 1982.