
An application of the Ncut algorithm, with an
open-source implementation (in the R environment).

J. Antonio Garcia Ramirez
Centro de Investigacion en Matematicas. Unidad Monterrey

jose.ramirez@cimat.mx

Abstract—Although the analysis of data is a task that has
gained the interest of the statistical community in recent years
and whose familiarity with the statistical computing environment,
they encourage the current statistical community (to students and
teachers of the area) to complete statistical analysis reproducible
by means of the tool R. However for years there has been a gap
between the calculation of matrices on a large scale and the term
"big data", in this work the Normalized Cut algorithm for images
is applied. Despite the expected, the R environment to do image
analysis is poorly, in comparison with other computing platforms
such as the Python language or with specialized software such
as OpenCV [11].
Being well known the absence of such function, in this work we
share an implementation of the Normalized Cut algorithm in
the R environment with extensions to programs and processes
performed in C ++, to provide the user with a friendly interface
in R to segment images. The article concludes by evaluating the
current implementation and looking for ways to generalize the
implementation for a large scale context and reuse the developed
code.

Key words: Normaliced Cut, image segmentation, Lanczos algo-
rithm, eigenvalues and eigenvectors, graphs, similarity matrix, R
(the statistical computing environment), open source, large scale
and big data.

I. INTRODUCTION AND MOTIVATION

The statistical recognition of patterns, and in particular
the analysis of images, is a stimulating field of study where
statistics and computer science coexist. In recent years
the environment of statistical computing and programming
language R [12] has increased its presence in statistical
analysis and is even used in big data contexts, on the other
hand, image analysis is an area that continues to motivate
investigation.
As a counterpoint to what is expected, since image analysis
uses different statistical learning techniques (both supervised
and non-supervised), the R environment has few tools for
image analysis, as can be seen when reviewing the entry
of ’MedicalImaging’ in its Task View, in front of other
specialized tools such as OpenCV [11]. On the other hand,
there are scientific computing environments that integrate
some tools to analyze images, but their capacities are reflected
in their commercial price, for example MatLab [9].
The above, together with the fact that image segmentation
is a final objective and sometimes only an intermediate step
in other investigations, in this work an image segmentation
application is developed using the Normalized Cut algorithm,
which we will refer to in the following as Ncut. In order
to provide users and developers of the R language with an

implementation of the Ncut algorithm (which does not exist
in OpenCV and other scientific computing environments),
two programs were coded; each contains a file with extension
.R that determines it as an R language code as well as a
file with extension .cpp that is a C ++ language code that
uses stable C ++ language libraries to perform calculations
and optimal storage of matrices; one for grayscale images
and one for RGB images available in the github author’s
personal [4] https://github.com/fou-foo/MCE/tree/master/
Second/AnalisisNumericoYOptimizacion/Miniproyecto
respectively the files are ”W_float.cpp” and ”mini_cut_float.R”
for grayscale images and ”W_RGB_float.cpp” and
”mini_Ncut_RGB_float.R” for images on RGB channels
(which is easily adaptable to images with more channels).
Details on implementation are discussed in the last subsection
of section ”II. Workflow ”of this report.
With the above, an easy-to-use open-source tool is provided,
particularly in the R environment, although the .cpp code
can be exported to other computing environments, for the
Ncut algorithm, which provides the basis for future statistical
computing developments. The product developed allowed
to segment a set of images from the personal profile of
the author of the Facebook [3] platform, whose results are
reported in this work.
The organization of the present work is as follows: in the
section ’II. Workflow" is explained in a general way in which
the Ncut algorithm that was used in this work consists, as
well as its relation with the Lanczos algorithm, later the
implementation of the algorithm is detailed so that it is easy
to use in the R environment.In the section ”III. RELATED
WORKS” we report the research carried out on the lack
of implementations of both the Ncut algorithm and the
Lanczos algorithm in different architectures (which makes
the need for an own implementation tangible) such as tools
dedicated to the big data context (such as Apache Hadoop
[7] and Apache Spark [19]) where the author sees an area of
opportunity for massive image analysis, on the other hand, in
large-scale matrices there are implementations in MPI such
as ScaLAPACK [17] of the Lanczos algorithm, however,
they do not implement higher-level routines such as Ncut.
We conclude this section by commenting on tools that we
consider medium-term to be useful for large-scale scientific
computing such as the programming language Elixir [2].
Then in the section "IV. Experiments and Results" are shown
(and in some images are detailed) the results of the image

https://github.com/fou-foo/MCE/tree/master/Second/AnalisisNumericoYOptimizacion/Miniproyecto
https://github.com/fou-foo/MCE/tree/master/Second/AnalisisNumericoYOptimizacion/Miniproyecto

segmentation realized with the own implementation. The
section concludes with the benefits and limitations of the
implementation to obtain a "good" image segmentation. Later
in the section "V. Conclusions" we summarize the discoveries
learned and evaluate the methodology used. Finally, the
"Appendix" section proposes future works of improvement
of the implementation, within the open-source context, to
segment images of greater resolution and size to those
addressed in this work, as well as the possible extension
to other statistical learning techniques with the purpose of
reusing the code already developed and future.

II. WORKFLOW

A. On the problem of segmenting images and the focus of Ncut

The problem of segmenting an image (considering the
values that each pixel can have in different channels) is usually
formulated in mathematical terms in the following way: given
an image whose set of pixels we call V , it is sought to
partition V in disjoint sets V1, V2, ...Vm where some measure
of homogeneity (ie of similarity) between the pixels of each
Vi is high while the same measure through different set Vi,
Vj is low.
Although the previous measure of similarity responds to the
importance of visual, spatial and grouping perceptions, it must
be shared in nearby pixels. In view of the fact that the set
of all possible partitions of a set V is too large and grows
exponentially as a function of the cardinality of V , in fact, this
is the definition of the Stirling numbers of the second type,
it arises the question How to choose the "correct" partition?
There are generally two ways to approach the problem: the
first is to pay attention to low levels of coherence between
brightness, color and texture in each pixel, however this
approach tends to produce hierarchical segmentations where
the larger hierarchies respond to groups and the smaller ones to
individual pixels, in practice can be done with computationally
costly algorithms such as the popular ’single’ and ’ward’
that produce dendograms. In contrast, the second approach to
dealing with the problem is the one shared by Ncut, which is a
downward focus, meaning that it first pays attention in larger
areas and then looks at the details, following the analogy of
[18] ”as a painter first marks the large areas and then fills the
details”.
Following the ideas of [18], the problem of image segmenta-
tion consists of two points:

1) What is the precise criterion for a good partition? That
is, define the similarity between elements of V

2) How can such that partition be computed efficiently?

Briefly, the approach suggested by [18], to partition an image
is to consider the pixels of a V image as the vertices of a
graph G = (V,E) and form a partition in two sets A and B
such that A ∪ B = V , A ∩ B = ∅, simply removing edges
that connect both parts. The degree of dissimilarity between

A and B can be calculated as the total weight of the edges
that were removed, in graph theory this is called cut:

cut(A,B) =
∑

u∈A,v∈B
w(u, v)

Finding the minimum cut is a well-studied problem, even at
the undergraduate level of careers such as applied mathematics
or computer science, and there are efficient algorithms to solve
it.
On the other hand [18] proposes the following measure of
dissociation between groups, Normalized cut:

Ncut(A,B) =
cut(A,B)

assoc(A, V)
+

cut(A,B)

assoc(B, V)

Where assoc(A, V) = sumu inA,t inV w(u, t) corresponds to
the total connections of the nodes in the set A to all nodes in
the graph and assoc(B, V) is defined similarly. A fundamental
result of cite Ncut is that minimizing dissociation through
groups, ie the measure Ncut, is equivalent to maximizing the
association within each group and that both conditions can be
satisfied simultaneously.

B. Mathematical and computational aspects

As commented in [18] finding the optimal Ncut exactly
is an NP-complete problem (whose elegant proof is found
in appendix A of the same paper [18] and is attributed to
Papadimitrou). However, the authors of [18] prove that relax
the conditions to the continuous domain an approximate solu-
tion to the discrete problem can be found efficiently and after
defining notation and with a little algebra the authors of the
paper show that this approximate solution to the minimization
of Ncut corresponds to:

min
x
Ncut(x) = min

y

yt(D −W)y

ytDy
(1)

Where x is an indicator vector with 1 in the ith position if
the i-th pixel is in A and -1 in all other |V | − 1 entries,
D = diag(d1, d2, ..., d|V |) is the diagonal matrix where
di =

∑
j w(i, j), W is simply the weights matrix of edges

is W (i, j) = wij , and finally y is the vector where each entry

i ∈ {1,−b} with b =
∑

xi>0 di∑
xi<0 di

and yD1 = 0 where 1 is a
vector of dimension |V | with 1’s on all your tickets.
From the above the authors of [18] recognize that (1) corre-
sponds to the quotient of Rayleigh [5]. Relaxing the condition
that y taking real values (1) is minimized by solving the
generalized eigenvalues problem:

(D −W)y = λDy (2)

As shown in [18] (2) it is equivalent to the standard eigenval-
ues problem

D−1/2(D −W)D−1/2z = λz (3)

Where z = D1/2and. An interesting property of (3) is that
z0 = D1/21 is an eigenvector associated with the eigenvalue
0, moreover D−1/2(D − W)D−1/2 is symmetric and semi
positive definite, so z0 is the eigenvector associated with the

smallest eigenvalue and by a specific result of the courses of
linear algebra, the eigenvectors of a matrix are perpendicular
so the eigenvector associated with second smallest eigenvalue
of (3) is perpendicular to z0. Then, the eigenvector associated
with the second smallest eigenvalue of (3) is the actual
solution of (2).
Both in the application made in the set of images and in
the implementation, explicitly (3) is used to find the desired
partition by means of the corresponding eigenvalues and
eigenvectors. As stated in [18] there are several peculiarities
about the use of the previous result. An image can be
segmented using the k eigenvalues, and their corresponding
eigenvectors smallest which is computationally expensive
by the dimensions of W so if the original image is of
size h × w then W has dimensions (h × w) × (h × w),
so we can start from finding the first solution of (3) and
perform the same procedure on each set A and B (which
is computationally more efficient, since the matrix W has
been previously calculated). In our application, our approach
consisted in segmenting using the eigenvector associated
with the second smallest eigenvalue of (3) to identify two
groups, and this was also considered in conjunction with
the eigenvector associated with the third smallest eigenvalue
of (3) to segment in 3 sets, in our workflow, by obtaining
the two aforementioned eigenvectors, we apply the kmeans
algorithm to the vector inputs to have more defined groups.
It is important to mention that in view of the nature of
the algorithm Ncut the preprocessing phase of the images
with which it was worked does not include any filter on the
original image.
Then the grouping algorithm used in our application consists
of:

1) Given an image of size h × w with n channels, con-
sidered as a graph G = (V,E), construct the matrix
of weights W connecting two nodes with a measure of
similarity between pairs of nodes For which we choose
a Gaussian kernel defined as

Wij = e−||x(i)−x(j)||22/2σ
2
I e−||x(i)−x(j)||22/2σ

2
x

If ||x(i) − x(j)||22 < r2 and 0 otherwise where x(i) is
the i-th pixel of the image . In our experiments we fix
σ2
x = 10, σ2

I = 0.05 and following the recommendation

of [18] we set r =

⌊√
(h×w)−1

2 ∗ 0.1
⌋
+ 1, that is, we

consider that each pixel is connected to the most with
r2 pixels around him in the metric L2.

2) Solve (3) and save the eigenvectors associated with the
second and third smallest own values

3) First use the eigenvector associated with the second
smallest eigenvalue and apply its kmeans entries, then
use the two eigenvectors mentioned in the previous point
and also use kmeans on its inputs to partition the image
into two and three sets respectively.

In general, solving the problem of eigenvalues for all
eigenvalues requires O(p3) operations, where p is the number
of pixels in the image (in our notation p = h × w), which
makes Ncut impractical for large image segmentation,
however in our experiments we manage images with up to
19,200 pixels (138 pixels on each side for square images),
but for our particular application we have aspects that favor
computation : first our matrix W is symmetric (which is
a consequence of the symmetry of the kernel used), semi
positive definite and sparse (in view of the construction of r)
and we only need the eigenvectors associated with the three
eigenvalues smaller, as mentioned in [18] the accuracy of
the eigenvalues is low because as we could experimentally
prove the distribution of the entries of the eigenvectors
mentioned makes it clear that knowing the sign corresponding
to the entry of the own vector is enough to classify in
addition to the comments of [18] experimentally we found
that the calculation of W only requires operations between
numbers of floating arithmetic of the type float in C ++ in
a 64-bit architecture. The aforementioned properties are fully
exploited by the Lanczos method, which has a complexity of
0(mp)+O(mM(p)) [5] where m is the maximum number of
calculations of the type matrix-vector (with sparse matrices)
and M(p) is the cost of matrix-vector multiplication, as we
work with sparse matrices the complexity of M(p) is O(p).
We summarize the workflow that was followed to segment
images using Ncut in figure 1. Where the blue color indicates
that this task was used using the R language and the orange
color indicates that the task was done through the C ++
language. In particular, the preprocessing of the second step
consisted of resizing the images so that the number of pixels
in them did not exceed 19,200 in the necessary cases, which is
done by means of a closer neighbor interpolation, with which
image information is lost. original but makes segmentation
feasible in this new size. In addition to normalizing the values
of the pixels in each channel, that is to say that in each
channel for each pixel value is subtracted with the minimum
value found in the channel is left and the result was divided
among the range of the original channel (difference between
the maximum value and the minimum).

Fig. 1. Workflow to segment images

C. Details of the implementation (in particular in the R
language)

The R programming language in particular has challenges
in the application of the Ncut algorithm due to the following
reasons:

1) The representation of the images and in general of the
floating point numbers correspond to the standard of
double of the C ++ language

2) R loads all the objects with which you work in RAM.
However the sparse matrices are easy to handle in the R.
environment.
Following the diagram in figure 1, the disk reading was did
with the package imager [8] which represents the images as a
4-dimensional array where the first two dimensions correspond
to the height and width of the image, and the fourth dimension
corresponds to the channels available to the image. This 4-
dimensional representation uses the type numeric of R that
corresponds to 64-bit C ++ data type double. In cases where
it is required to resize the image, it was done with the same
package of R.
To counteract point (1) above, the calculation of the W matrix
is done in C ++ by restricting the type of data between
operations to the type float, for which the Rcpp [13] package
is used and to store the matrices in a sparse matrix format,
the RcppEigen [15] package is used, which allows to interact
with the Eigen library of the C ++ language, so that the
output of the C ++ code is an array W ∗ symmetric, positive
semi-definite and of the sparse type that incorporates the
necessary information to solve the problem of the eigenvalues
of equation (3). In particular, the program that segments
images with more than one channel uses the RcppArmadillo
[14] package, which has an interface to use the C ++ Armadillo
linear algebra library, to use 3-dimensional arrays (in this point
is important to mention that the real implementation requires
changes to the header of the file RcppArmadillo.h, increase
the line ”#include <RcppEigen.h>” as the default installation
and the process of attach (innate of the R language) conflicts
the headers RcppEigen.h and RcppArmadillo.h as both refer
to the Rcpp.h header, however when add the mentioned line
a single header includes a others in a single invocation and
attached file).
Up to this point we used the C ++ language for the calculation
of W , notably improving the execution time compared to
doing it in R, besides saving memory space of 50 % when
using only the data type float instead of double
To counteract point (2) of the previous list, objects that are no
longer required are explicitly removed from the environment
and we explicitly called the garbage collector. The package for
the fourth step uses a function of the Rspectra [16] package,
which is an interface to the Spectra library developed in C
++ similar to the ARPACK library (developed in Fortran),
which refers to a C ++ implementation of the Lanczos method
implicitly restarted and to obtain the smallest eigenvalues in
the place of the large ones, which use the method of change

around the zero in place explicitly, the matrix W ∗.
The fifth step that consists in applying kmeans on the eigen-
vectors obtained previously, was done with the implementation
of the base kernel of R with 50 iterations and fixing the seed
in both cases to provide reproducibility to the experiment,
finally the application of the segmentation corresponds to
a convolution of matrices between the original image, after
having been resized if necessary, and the arrangement of the
segmented pixels. In the case of images with three channels,
this convolution maps by channel to the original value of
the pixel to zero, or multiplies it by 0.5 or leaves it intact
depending on which segment it belongs to.

III. RELATED JOBS

In the previous section we detailed an implementation
to segment images using the Ncut algorithm that depends
strongly on the implementation of the RSpectra [16] package
of the implicitly restarted Lanczos method, which, as we
mentioned earlier, invokes an implementation in C ++ of its
analog in Fortran of the classic ARPACK [1] library to solve
the problem of finding the eigenvectors associated with the
smallest eigenvalues of a positive and scattered semidefinite
symmetric matrix. However, the current implementation is
limited in terms of the size of the W matrix, which is why
we resort to resizing the images in sizes approximately greater
than 138× 138.
In a large-scale context the ScaLAPACK [17] library
implemented a routine that solves the problem of val-
ues and eigenvectors for the symmetric case (such as
the one we attacked), however in a big data context
there are friendly implementations, even with a API to
the Python language (see https://spark.apache.org/docs/2.3.0/
mllib-dimensionality-reduction.html), of the SVD decompo-
sition (considering only the largest singular values) whose
implementation is detailed in [6], with this work (and its
current implementation of the QR decomposition) or with
the implementation of the inverse of a matrix in the Spark
environment proposed in [20] makes it plausible to scale the
problem and the segmentation of images using the textit Ncut
algorithm, however, this requires a new data and computing
architecture.
On the other hand we hope that programming languages that
are born as functional and concurrent as Elixir [2] will develop
robust libraries for scientific computing in the medium term,
since today the language has a linear algebra library, without
However, it is still in a state of development [10], as we can
see by noting that its implementation of the inverse of an ’inv’
matrix uses Gaussian elimination and brute force.

IV. EXPERIMENTS AND RESULTS

The current implementation we shared of the algorithm
Ncut, was applied to a set of images from the author’s Face-
book profile. The experiments are reported in the following
Table I, making reference to each image with a number and the
average time of the execution in the image. The experiments
were performed on an Asus GL553VD machine with 8 GB

https://spark.apache.org/docs/2.3.0/mllib-dimensionality-reduction.html
https://spark.apache.org/docs/2.3.0/mllib-dimensionality-reduction.html

of RAM (but due to the configuration of the Windows 10
operating system) it is only possible to fully use 6 of these 8
GB, with an Intel Core i7-7700HQ processor (with 8 logical
cores) at a speed of 2.5GZ.
During the execution times, and part of the development, we
were able to estimate the amount of RAM a PC requires
to execute the current implementation of Ncut, which is
approximately 4 times the space required to store the array W ,
this because at some point it is required to have in memory two
matrices additional to the W matrix of the same dimensions
and same characteristics, in addition to the memory that the
Lanzos implementation uses to be made.

Image’s
number

and name

Original
size

Analyzed
size

Execution
time

grayscale
(mins)

Execution
time
RGB

(mins)

Matrix
size
W

(MB)
1: Cell.jpg 100 × 69 100× 69 22.3 secs 17.6 secs 133.1

2: los_amantes.jpg 397 × 504 397× 504 2.1 2.4 429.1
3: foo.jpg 528 × 528 132×132 4.6 5.9 855.2

4: guapa.jpg 970× 720 100× 180 4.6 4.9 330.1
5: fer.jpg 533×960 100×180 8.8 7.0 874

6: brindis.jpg 1280×960 160×120 13.7 7.1 1000
7: foo_clau.jpg 1280×720 104×180 7.0 8.1 954.6

8: f002.jpg 960×960 138 ×138 16.9 8.9 1000
9: frascos.jpg 2048×1152 180×103 7.5 4.1 943.4
10: foo3.pjg 960×960 138×138 11.3 12.4 1000
11: bicis.jpg 1280×960 160×120 31.5 33.5 1000

12: mariposa.jpg 2048×1151 178×100 5.9 3.3 863
13: filo_liz.jpg 2048×1152 182×102 7.9 7.0 943.8
14: marco.jpg 2048×1365 166×110 5.4 4.7 933

TABLE I
SUMMARY OF THE EXECUTION OF THE ALGORITHM Ncut IN THE SET OF

SAMPLE IMAGES. NOTE THAT FROM IMAGE 2 ALL THE IMAGES WERE
RESIZED.

Figure 2 (from top to bottom) shows the results obtained
when selecting images 1 to 5 using the two sets of channels
(grayscale and RGB) after being resized to the sizes described
in table I. It is interesting to note that the results are ideal for
images 1 and 5, on the other hand, for images 3 and 4 they
can be identified by themselves, however, in image 2 as it is
a photograph of a pencil, the clamps that hold up are easily
identified the sketch and it is not until the segmentation with
two eigenvectors (right) that is identified as the whole sketch
as a single differential set of the tweezers.
In figure 3 (from top to bottom) the results obtained by
segmenting the images 6 to 10 using analogously notation to
figure 2 are shown. It is interesting to note that the results are
consistent when recognizing people from the background, for
example figure 10 and 8 (where the person is detected even in
the segmentation that uses only an own vector and achieving
greater detail when using more components) however in image
6 the segmentation in RGB is only able to identify the clothes
of the person in green . When viewing the image 9 we noticed
that in particular the implementation is delicate recognizing
glass objects however it distinguishes well other materials
such as plastic. In particular of the results of Figure 6 and
7 we can see that the light conditions affect the performance
of the implementation which suggests an improvement in the

preprocessing for future work.

Fig. 2. Results of the segmentation of images 1 to 5, original image
(left), segmentation obtained using the eigenvector associated with the second
smallest eigenvalue in grayscale and RGB (center and right above) and
segmentation obtained using the associated eigenvectors to the second and
third smallest eigenvalue in grayscale and RGB (middle and bottom right).

Fig. 3. Results of the segmentation of images 11 to 14, original image
(left), segmentation obtained using the eigenvector associated with the second
smallest eigenvalue in grayscale and RGB (center and right above) and
segmentation obtained using the associated eigenvectors to the second and
third smallest value in grayscale and RGB (middle and bottom right).

In figure 4 (from top to bottom) the results obtained through
the images 11 to 14 are shown using analogously to figure 2.
From the previous set of images we conclude: on the one hand,
the image 11 shows that the information provided by the RGB
channels is valuable to identify people from the background
with a single eigenvector, in counterpoint the images 12 and
13 achieve greater performance in the gray scale (although
the image of the butterfly in the RGB channels is easily
distinguished). Finally, the image 14 is another sketch, but
unlike the image 2, this is a photograph, where we see that
the segmentation with the channels in the gray scale achieved
a better performance when identifying the body however, this
could be due to to causes of lighting at the time of taking the
photograph.

Fig. 4. Results of the segmentation of images 6 to 10, original image
(left), segmentation obtained using the eigenvector associated with the second
smallest eigenvalue in grayscale and RGB (center and right above) and
segmentation obtained using the associated eigenvectors to the second and
third eigenvalue smaller in gray scale and RGB (center and right below).

V. CONCLUSIONS

In general terms, what has been learned in the development
of this work is: the algorithm Ncut presents great potential to
segment images (recognize people and variety of materials)
as we found in the experiments. In analogy to many other
spectral and kernel-based classification methods, such as
string-kernels or kernel PCA, the Ncut algorithm requires
selecting ”appropriately” a kernel (in this case the function
we use to construct the similarity matrix W) in addition
to several parameters (such as the standard deviations
that involve the definition of the kernel used, the way to
group pixels from of eigenvectors ...). In counterpoint to
the mentioned methods Ncut has a elegant formulation that
combines basic results of linear algebra and graph theory and
their NP property of its exact solution, makes it attractive and
encourages us to subsequent works to evade the step in the
preprocessing that consisted of textbf resize the image.

APPENDIX

Future works

As future works, in the first instance we consider avoiding
the redimensioning of images and thus experiencing whether
considering the image in its entirety provides information that
is worth the development and implementation on a large scale
(in the short term we consider expanding the implementation
to consider inputs from 3000 × 3000) even though that means
moving the used computing architecture.
With the above we will improve the execution times and
consider the option to tuning the parameters mentioned in the
previous section in order to obtain better results and in the
medium plane to make hypotheses about the distribution of
such parameters in different domains, or sets of images.

REFERENCES

[1] Richard B Lehoucq, Danny C Sorensen, and Chao Yang, ARPACK
users’ guide: solution of large-scale eigenvalue problems with implicitly
restarted Arnoldi methods, volume 6. Siam, 1998.

[2] Developmented by José Valim for Plataformatec, Elixir , https://
elixir-lang.org/

[3] Facebook Inc, Facebook, 2018 and https://www.facebook.com/
[4] GitHub ,Inc., GitHub, 2018 and https://github.com/
[5] G.H. Golub and C.F. Van Loan, Matrix Computations, John Hopkins

Press, 1989.
[6] Bosagh Zadeh, Reza and Meng, Xiangrui and Ulanov, Alexander and

Yavuz, Burak and Pu, Li and Venkataraman, Shivaram and Sparks,
Evan and Staple, Aaron and Zaharia, Matei; Matrix Computations and
Optimization in Apache Spark, Proceedings of the 22Nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
KDD ’16 2016, ISBN:978-1-4503-4232-2; San Francisco, California,
USA; pags 31–38, http://doi.acm.org/10.1145/2939672.2939675

[7] ’Welcome to Apache Hadoop!’, Welcome to Apache Hadoop!, http:
//hadoop.apache.org/. Consulted: 31-Mar- 2018.

[8] Simon Barthelme (2017). imager: Image Processing Library Based on
’CImg’, R package version 0.40.2., https://CRAN.R-project.org/package=
imager

[9] The MathWorks Inc., MATLAB; Natick, Massachusetts, year 2000
[10] Friedel Ziegelmayer, Matrix; https://hexdocs.pm/matrix/Matrix.html#

summary, Consulted el 15-Apr-2018
[11] Bradski, G., The OpenCV Library, journal Dr. Dobb’s Journal of

Software Tools id:2236121, 2008-01-15, year 2000
[12] R Core Team, R: A Language and Environment for Statistical Com-

puting, R Foundation for Statistical Computing; Vienna, Austria, 2014 y
http://www.R-project.org/

[13] Dirk Eddelbuettel and James Joseph Balamuta (2017). Extending R with
C++: A Brief Introduction to Rcpp. PeerJ Preprints 5:e3188v1, https:
//doi.org/10.7287/peerj.preprints.3188v1.

[14] Dirk Eddelbuettel, Conrad Sanderson (2014), RcppArmadillo: Accel-
erating R with igh-performance C++ linear algebra, Computational
Statistics and Data Analysis, Volume 71, March 2014, pages 1054-1063.
http://dx.doi.org/10.1016/j.csda.2013.02.005

[15] Douglas Bates, Dirk Eddelbuettel (2013), Fast and Elegant Numerical
Linear Algebra Using the RcppEigen Package, Journal of Statistical
Software, 52(5), 1-24. http://www.jstatsoft.org/v52/i05/

[16] Yixuan Qiu and Jiali Mei (2016), RSpectra: Solvers for Large Scale
Eigenvalue and SVD Problems, R package version 0.12-0, https://CRAN.
R-project.org/package=RSpectra

[17] Blackford, L. S. and Choi, J. and Cleary, A., D’Azevedo, E. and
Demmel, J. and Dhillon, I. and Dongarra, J. and Hammarling, S. and
Henry, G. and Petitet, A. and Stanley, K. and Walker, D. and Whaley,
R. C.;ScaLAPACK Users’ Guide, Society for Industrial and Applied
Mathematics 1997, Philadelphia, PA. ISBN :0-89871-397-8

[18] Shi J. and Malik J., Normalized Cuts and Image Segmentation, IEEE
Transactions on pattern analysis and machine learning, VOL. 22, No. 8,
Ags 2000

[19] Spark Community. Apache Spark, https://spark.apache.org/. Consulted:
31-Mar-2018

[20] J. Liu, Y. Liang and N. Ansari; Spark-Based Large-Scale Matrix
Inversion for Big Data Processing; IEEE Access, vol. 4, pp. 2166-
2176, 2016, http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=
7440788&isnumber=7419931

https://elixir-lang.org/
https://elixir-lang.org/
https://www.facebook.com/
https://github.com/
http://doi.acm.org/10.1145/2939672.2939675
http://hadoop.apache.org/
http://hadoop.apache.org/
 https://CRAN.R-project.org/package=imager
 https://CRAN.R-project.org/package=imager
https://hexdocs.pm/matrix/Matrix.html#summary
https://hexdocs.pm/matrix/Matrix.html#summary
http://www.R-project.org/
https://doi.org/10.7287/peerj.preprints.3188v1.
https://doi.org/10.7287/peerj.preprints.3188v1.
 http://dx.doi.org/10.1016/j.csda.2013.02.005
http://www.jstatsoft.org/v52/i05/
https://CRAN.R-project.org/package=RSpectra
https://CRAN.R-project.org/package=RSpectra
https://spark.apache.org/
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7440788&isnumber=7419931
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7440788&isnumber=7419931

	Introduction and motivation
	WORKFLOW
	On the problem of segmenting images and the focus of Ncut
	Mathematical and computational aspects
	Details of the implementation (in particular in the R language)

	Related jobs
	Experiments and results
	Conclusions
	References

