
IEEE SYSTEMS JOURNAL 1

A Modern Chase Algorithm
Piyush Kaushik, Shrisha Rao, Member, IEEE,

Abstract—Pursuit and evasion tends to be incorporated in
human nature from a very long time with a very huge range
of activities. Here, we are going to create an intelligent chase
algorithm, which uses two basic approaches. After which we will
use the newly created equations to simulate both approaches and
provide graphical results. This analysis is based upon the fact
that in modern days we can estimate the speed of a moving object
and then chase it down depending upon its speed. We will also be
taking the accuracy of such estimation in picture and depending
upon a certain accuracy and other inputs the simulation will
provide the result and performance of both the approaches.

Index Terms—Pursuit-Evasion, Escape-Chase, pursuit graphs,
speed estimation, chase algorithm.

I. INTRODUCTION

Fig. 1. Classic Ship Analysis

The above figure is the basis of Pierre Bouguer’s pirate
ship analysis. It was one for the very first analysis in the field
of pursuit-evasion. In this, Bouguer considered a pirate ship
chasing down a merchant ship.[?] Here, at time t = 0, there
is a pirate ship at (0,0) which is chasing down a merchant
ship at x0 distance. The speed of both ships is vp and vm
respectively and any given time the pirate ship moves towards
the merchant ships position only. Thus a tangent at the path
of pirate ship will always meet the merchant ship. At time t
if the pirate ship is at (x,y) then the equation of y(x) can be
calculated as,[1]

y(x) = (n/(1− n2)) ∗ x0 + [1/2 ∗ (x0 − x)]∗
[(1− (x− x/x0)n/(1 + n)− (1− x/x0)−n/(1− n)]
n = vm/vp

(1)

S. Rao is with the International Institute of Information Technology

Here, differential model of pursuit evasion is used to fetch
a saddle equilibrium and generate the capture point if exists.
But the issue with differential pursuit evasion is that there
might be more than one method possible to solve the problem.
It involves the determination of optimal strategies. There are
few concerns with the above equation, first is, it assumes that
pirate ship is situated perpendicular to the motion of merchant
ship which might not always be possible and second is that it
doesn’t address the possibility of both ships having different
starting Y-axis co-ordinates. Another issue is with the rule
of pursuit which is being followed is optimal or not. As we
know in modern days, there is speed estimation technology
exists for ships as well as other pursuers.[4] So we will be
creating new derivations to accommodate these concerns and
provide an analysis for which of the two approaches is going
to result in better outcome, given certain inputs.

There has been some work in the field of creating and
simulating a chase as [3] analyzes a simple robot with local
sensors that moves in an unknown polygonal environment.
The robot can execute wall-following motions and can tra-
verse the interior of the environment only when following
parallel to an edge. Also [2] a virtual avatar is programmed
to pursue or evade the participant in an ambulatory virtual
environment. Both of these researches have been highly useful
in the robotics and self driven chases. But when it comes
to implementation for mobile devices or machines with less
processing power, they prove to be less practical. So here
we are proposing a simple yet powerful chase algorithm,
which will take Bouguer’s analysis as basis implement modern
estimation approach in it as well.

II. THEORY AND CONCEPT

To create an efficient model, we need to take every case
into our consideration that might occur during a chase, be it
angular or linear deviation or both. Now, in our model we
are using two basic approaches of chase-

1. When pursuer is always moving towards the evader.
In this case, if at any point of time if we construct a tangent
across the path of pursuer then it will definitely concatenate
evader’s position at that moment.
This approach is named traditional, as it follows the traditional
concept of moving towards your goal.

2. Whereas in a more modern approach, the pursuer
moves towards the point where he thinks the evader will be
at the time he will reach there.
In other words, the pursuer tries to guess the speed of evader
then determine a capture point and move towards it.

IEEE SYSTEMS JOURNAL 2

Both of the two approaches are efficient for a chase,
and it is obvious that if the pursuer is able to determine
the speed of evader accurately, then the modern approach is
always going to be the better of the both. But it is not the
case as we have already discussed δ. So depending upon the
value of delta anyone of the above two approaches may be
better than the other.

In our model, we have created an intelligent chase algorithm
which will consider both the approaches at any given situation
and then it will determine which one to use. The results
generated from such hybrid method are more efficient than
both the above pure methods.

A. Terminology
Pursuer: At any given point of time, the coordinates of

pursuer will be stored as (xp, yp), ~vp is the velocity and the
magnitude of his speed will be as vp.

Evader: Similarly, At any given point of time, the
coordinates of evader will be stored as (xe, ye), ~ve is the
velocity and the magnitude of his speed will be as ve.

Other: (xs, ys) is going to be the final capture point for the
given situation, and n = ve/vp is the speed ratio of pursuer and
evader, δ is the inaccuracy by which pursuer is determining
the speed of evader.

B. Traditional Approach
As discussed above, the tradition pursuit analysis gives us

the result based upon the concept that initially the pursuer is
at (0,0) and evader is at (0, xm). But that might not be the
usual case,

Fig. 2. A more Generic situation

As seen in the fig.2, Initially the pirate ship is considered
at (xp, yp) and the merchant ship is at (xe, ye) with speeds
vpandve. Now the new equation for such scenario will be

y(x) = (n/(1− n2)) ∗ (xe − xp) + [1/2 ∗ (xe − xp − x)]∗
[(1− (x− xp)/(xe − xp))n/(1 + n)−
(1− (x− xp)/(xe − xp))−n/(1− n)]

(2)

1) Distance Deviation: It is not compulsory for both the
pursuer and evader to be in same line, i.e. ye = yp = y′ .
We can compute the capture point for such case by reverse
engineering the traditional formula.

Fig. 3. Distance Deviation

Here in fig.3 we know that when evader is at (xe, ye) and
pursuer is at (xp, yp) then we need to get the value of xc in
the graph and after that we will get the hypothetical starting
position, which in turn can be used to calculate the capture
point.

yp = yc + (n/(1− n2)) ∗ (xe − xc) + [1/2 ∗ (xe − xc − xp)]∗
[(1− (xp − xc)/(xe − xc))n/(1 + n)−
(1− (xp − xc)/(xe − xc))−n/(1− n)]

(3)

here (xc, yc) can be estimated, after which we can calculate
the capture point for such case.

2) Angular Deviation: Apart from linear variation, there
might be some angular deviation followed by merchant ship.

Fig. 4. Angular Deviation

As shown in the fig.4 there is a variation of θ. This situation
can be solved by using the rotation of the axis w.r.t (0,0). The

IEEE SYSTEMS JOURNAL 3

co-ordinates for any point P(x,y) will be

x
′
= x ∗ cos θ + y ∗ sin θ

y
′
= −x ∗ sin θ + y ∗ cos θ

(4)

Then we will use the same equations (1 and 2) to get the
capture point, and then convert the co-ordinates back to the
original axis.

C. Modern Approach

In this, the chaser is aware of the speed of target, with
certain accuracy. In the traditional example of pirate ship
analysis, the pursuers will always be aware of the speed of
merchant ship ve with inaccuracy of δ
Using the above information, the pursuer can calculate the
nearest capture point and move towards it in linear shortest
path motion.

Fig. 5. Modern Approach

Here in fig.5, (xe, ys) is the capture point which can be
generated as,
Case-1. δ = 0
In this case δ = 0, means the pursuer is able to measure the
speed accurately.

(ys − ye)/ve = ((xe − xp)2 + (ys − yp)2)1/2/vp (5)

The only unknown in the above equation is ys, and it can
be solved as a quadratic equation. Out of which one solution
will be (< yp) which can be ignored.

Case-2. δi is positive
In such case, the measured speed will be more than the
actual speed of merchant ship. So the pirate ship will reach
the capture point earlier than the merchant ship and it has to
move towards merchant ship for some time.
Here the measured speed of merchant ship = ve
and actual speed is ve − δi ∗ ve
So the total time here,

(ys − ye)/ve + ((ys − ye)/ve) ∗ δi ∗ ve ∗ (vp + ve − δi ∗ ve)
(6)

Case-3. δi is negative
Similarly as above case, after reaching the capture point, the
pirate ship has to trail behind merchant ship.
Here the measured speed of merchant ship = ve
and actual speed is ve + δi ∗ ve
So the total time here,

(ys − ye)/ve + ((ys − yp)/ve) ∗ δi ∗ ve ∗ (vp − ve − δi ∗ ve)
(7)

Distance Deviation in this approach won’t require any spe-
cial calculation, similarly Angular Deviation can be handled
by the same axis rotation method.

III. MODEL

A. Basic Algorithm

A basic algorithm, is the one that follows any one of
the two approaches throughout the scenario. Which means
that if it is set for the traditional approach then it will keep
on following that until we have reached the capture point.
Another assumption that is taken into consideration is that
in the case of such basic algorithm, we are taking ”delta” as
zero when following the modern method. Which means that
pursuer is accurately able to determine the speed of evader.

Inputs: (xp, yp), (xe, ye), vp, ve, θ at t=0 (Starting Values)

Stack: The stack is something which is going to play a
pivotal role, it is going to reflect the changes in evader’s speed
and angle over the period of time. Each entry in the stack
can be considered as td (Time when the deviation occurs),
angd (angular deviation), veld (velocity deviation). The stack
can be considered as the part of the input, if there is a smart
algorithm which is written by the perspective of evader then
there is going to be no need to keep the stack values as they
will be automatically generated from the evader algorithm.

Output: (xs, ys), T (Total time taken in the chase).

Here, once we have provided the valid inputs to the above
algorithm, it runs the while loop until both evader and pursuer
have not met. In the loop we are using a variable eq which
determines whether there is any distance deviation or not. It
simply acts as a flag.

There are two different functions used in the above
algorithm,

1.Move: Used to move both the pursuer and evader in their
direction at a distance of unit time quantum.

2.Capture: Used to finish the algorithm, if there are no
more runtime deviations and returns the capture point as well
as total time taken.

Algorithm 3, details about the capture function, it applies
the previous equations, based upon the requirement. Move
function follows the same conditions, with a little change that

IEEE SYSTEMS JOURNAL 4

Algorithm 1 Basic Algorithm
1: Initialize θ and t← 0
2: while (xp, yp)! = (xe, ye) do
3: if yp = ye then
4: eq ← NODEV
5: else
6: eq ← DEV

7: if Stack.top = null then
8: capture(eq, (xp, yp), (xe, ye), θ, t, vp, ve)
9: return(t, (xp, yp))

10: else
11: if Stack.top(td) = t then
12: move(eq, (xp, yp), (xe, ye), θ, t, vp, ve, angd, veld)
13: Stack.pop()
14: else
15: move(eq, (xp, yp), (xe, ye), θ, t, vp, ve, 0, 0)

16: t++

17: return (xp, yp), t

instead of finishing the whole chase, it return the values of
(xp, yp), (xe, ye) after one time quantum only.

Algorithm 2 Move(eq, (xp, yp), (xe, ye), θ, t, vp, ve, angd, veld)
1: Update ve ← ve + veld
2: θ ← θ + angd
3: return (xp, yp), (xe, ye) with single quantam movement.

Algorithm 3 Capture(eq, (xp, yp), (xe, ye), θ, t, vp, ve)
1: if θ = 0 then
2: No angular deviation
3: if eq = 0 then
4: No distance deviation either.
5: Use eq.2 and return (xp, yp)
6: else
7: Distance deviation exists.
8: Use eq.3 and return (xp, yp)

9: else
10: Angular deviation exists
11: Use eq.4 to rotate axis over θ
12: if eq = 0 then
13: No distance deviation either.
14: Use eq.2 and rotate axis back.
15: return (xp, yp)
16: else
17: Distance deviation exists.
18: Use eq.3 and rotate axis back.
19: return (xp, yp)

The difference between these two functions is that, if there
are no more deviations in the speed or angle of evader in
future then it is better to finish the algorithm. Whereas on the
other hand if there are some future deviations then we must

only move towards the next coordinates.

Now using above functions, algorithm first checks which one
of the previous equations is applicable in existing situation
broadly basic or deviation the rest of the classification is
taken care inside move and capture functions. Once equation
type is determined, it checks if the stack is empty. If true
that means, there are no further deviations in the future and
we can simply call the capture function and finish algorithm.
Else it checks whether the current time is same as the time
on which deviation is supposed to happen and depending
upon that it calls the move function with certain parameters.

B. Delta

As discussed earlier, if pursuer is able to determine the
speed of evader accurately then all we need is basic algorithm
only which is going to run on modern approach. But that can’t
be normal case, there must always be some inaccuracy, it
has been observed that even in latest radar speed estimations
there is some inaccuracies.[5][6]
Here we will be using two different values of delta-

1) δp: This value is calculated with time and is known to
the pursuer as his existing inaccuracy.

2) δi: Inaccuracy associated with ith iteration in stack.

δp = δp + |δi|/(i+ 1) (8)

C. Hybrid Algorithm

For these reason, there is a requirement of a hybrid
algorithm which incorporates best of both methods. This
algorithm compares both methods at each iteration and then
pick the one which is best suitable for current values. It also
keep on updating δp with each iteration.
This algorithm is almost similar to basic algorithm with a
few changes-

1. There is a δi associated with each iteration of stack,
which is unknown to pursuer until t <= td

2. There is a new function named compare, which actually
takes both derivations of basic algorithms and runs them on
the input. After which it provides which algorithm is better
suited for current case.

3. There is a new variable called algo, which is used
to hold the information or output of compare function.

Complexity

The complexity of both hybrid and basic algorithm, depends
upon the iterations stored in the stack. If the input stack is
empty, i.e. the speed and angle of evader is going to stay
same through out the chase then capture point and total time

IEEE SYSTEMS JOURNAL 5

Algorithm 4 Hybrid Algorithm
1: Initialize θ, δp and t← 0
2: while (xp, yp)! = (xe, ye) do
3: if yp = ye then
4: eq = BASIC
5: else
6: eq = DEV

7: compare(eq, (xp, yp), (xe, ye), θ, t, vp, ve, 0, 0)
8: Set algo
9: if Stack.top = null then

10: capture(algo, eq, (xp, yp), (xe, ye), θ, t, vp, ve)
11: return(t, (xp, yp))
12: else
13: if Stack.top(td) = t then
14: compare(eq, (xp, yp), (xe, ye), θ, t, vp, ve,
15: angd, veld)
16: Set algo
17: move(algo, eq, (xp, yp), (xe, ye), θ, t, vp, ve,
18: angd, veld)
19: Stack.pop()
20: Update δp
21: else
22: move(algo, eq, (xp, yp), (xe, ye), θ, t, vp, ve, 0, 0)

23: t++

24: return (xp, yp), t

can be calculated by using previous derived equations in a
single step.
On the other hand, when there are some entries in stack, then
the algorithm is going to run one time quantum at a time until
the stack is empty.

• Best Case- O(1), Stack is empty.
• Worst case- O(MAX(td)), where MAX(td) is the time

associated with the last iteration stored in stack.
Here as similar to the basic algorithm, we can see that first

the equation type is determined in current situation. Once
done, a compare function is called and value of algo variable
is set. This value is going to change only if there is some
iteration on the top of stack for t = td. In such case compare
function is called again, this time with the values of stack as
well and accordingly algo is set again.
After which move or capture functions are called, depending
upon the situation.

IV. FUTURE WORK

Both the algorithms have been implemented in C++ and are
working perfectly.

1. As suggested, I am trying to implement these algorithms
in higher dimensions.

2. I am also working upon creating an android chase game
which will use the hybrid algorithm.

3. Obstacles can also be introduced with following types-

1) : Avoidable- These obstacles will only change the
speeds of pursuers and evaders without changing their paths.

2) : Unavoidable- These obstacles will effect both speed
and directions of agents.

3) : Application in mobile gaming as an intelligent chase
algorithm.

V. CONCLUSION

Here, we have used one of the first pursuit-evasion equation
and used it to derive a new modern chase algorithm. Which
can be highly useful to provide basic chase intelligence in
devices with processing constraints.

REFERENCES

[1] Nahin, Paul J. Chases and escapes: the mathematics of pursuit and
evasion. Princeton University Press, 2012.

[2] Warren, William, and Jonathan Cohen. ”Perceiving pursuit and evasion
by a virtual avatar.” Journal of Vision 10, no. 7 (2010): 1041-1041.

[3] Katsev, Max, Anna Yershova, Benjamin Tovar, Robert Ghrist, and
Steven M. LaValle. ”Mapping and pursuit-evasion strategies for a
simple wall-following robot.” Robotics, IEEE Transactions on 27, no.
1 (2011): 113-128.

[4] Liu, F., F. Zhao, W. Yu, L. Shi, and R. Wang. ”Ship detection and
speed estimation based on azimuth scanning mode of synthetic aperture
radar.” Radar, Sonar —& Navigation, IET 6, no. 6 (2012): 425-431.

[5] Tunaley, James KE. ”The estimation of ship velocity from SAR
imagery.” In Geoscience and Remote Sensing Symposium, 2003.
IGARSS’03. Proceedings. 2003 IEEE International, vol. 1, pp. 191-
193. IEEE, 2003.

[6] Shang, Shang, and Zhang Ning. ”Low speed target detection with short
CIT in HF surface wave radar.” In Signal Processing Systems (ICSPS),
2010 2nd International Conference on, vol. 2, pp. V2-499. IEEE, 2010.

[7] Blinn, James F. ”How to solve a quadratic equation.” IEEE computer
graphics and applications 25, no. 6 (2005): 76-79.

