OsloMet Beamer Theme
Author
Nikolai Bjørnestøl Hansen, Martin Helsø
Last Updated
2 years ago
License
Creative Commons CC BY 4.0
Abstract
Beamer theme for OsloMet – Oslo Metropolitan University.
Documentation: https://github.com/martinhelso/OsloMet.
Beamer theme for OsloMet – Oslo Metropolitan University.
Documentation: https://github.com/martinhelso/OsloMet.
% https://github.com/martinhelso/OsloMet
\documentclass[UKenglish, aspectratio = 169]{beamer}
\usetheme{OsloMet}
\usepackage{style}
\author[Hansen \& Helsø]
{Nikolai Bjørnestøl Hansen \texorpdfstring{\\}{} Martin Helsø}
\title{Beamer example}
\subtitle{Usage of the theme \texttt{OsloMet}}
\begin{document}
\section{Overview}
% Use
%
% \begin{frame}[allowframebreaks]
%
% if the TOC does not fit one frame.
\begin{frame}{Table of contents}
\tableofcontents
\end{frame}
\section{Mathematics}
\subsection{Theorem}
%% Disable the logo in the lower right corner:
\hidelogo
\begin{frame}{Mathematics}
\begin{theorem}[Fermat's little theorem]
For a prime~\(p\) and \(a \in \mathbb{Z}\) it holds that \(a^p \equiv a \pmod{p}\).
\end{theorem}
\begin{proof}
The invertible elements in a field form a group under multiplication.
In particular, the elements
\begin{equation*}
1, 2, \ldots, p - 1 \in \mathbb{Z}_p
\end{equation*}
form a group under multiplication modulo~\(p\).
This is a group of order \(p - 1\).
For \(a \in \mathbb{Z}_p\) and \(a \neq 0\) we thus get \(a^{p-1} = 1 \in \mathbb{Z}_p\).
The claim follows.
\end{proof}
\end{frame}
%% Enable the logo in the lower right corner:
\showlogo
\subsection{Example}
\begin{frame}{Mathematics}
\begin{example}
The function \(\phi \colon \mathbb{R} \to \mathbb{R}\) given by \(\phi(x) = 2x\) is continuous at the point \(x = \alpha\),
because if \(\epsilon > 0\) and \(x \in \mathbb{R}\) is such that \(\lvert x - \alpha \rvert < \delta = \frac{\epsilon}{2}\),
then
\begin{equation*}
\lvert \phi(x) - \phi(\alpha)\rvert = 2\lvert x - \alpha \rvert < 2\delta = \epsilon.
\end{equation*}
\end{example}
\end{frame}
\section{Highlighting}
\SectionPage
\begin{frame}{Highlighting}
Some times it is useful to \alert{highlight} certain words in the text.
\begin{alertblock}{Important message}
If a lot of text should be \alert{highlighted}, it is a good idea to put it in a box.
\end{alertblock}
You can also highlight with the \structure{structure} colour.
\end{frame}
\section{Lists}
\begin{frame}{Lists}
\begin{itemize}
\item
Bullet lists are marked with a yellow box.
\end{itemize}
\begin{enumerate}
\item
\label{enum:item}
Numbered lists are marked with a black number inside a yellow box.
\end{enumerate}
\begin{description}
\item[Description] highlights important words with blue text.
\end{description}
Items in numbered lists like \enumref{enum:item} can be referenced with a yellow box.
\begin{example}
\begin{itemize}
\item
Lists change colour after the environment.
\end{itemize}
\end{example}
\end{frame}
\section{Effects}
\begin{frame}{Effects}
\begin{columns}[onlytextwidth]
\begin{column}{0.49\textwidth}
\begin{enumerate}[<+-|alert@+>]
\item
Effects that control
\item
when text is displayed
\item
are specified with <> and a list of slides.
\end{enumerate}
\begin{theorem}<2>
This theorem is only visible on slide number 2.
\end{theorem}
\end{column}
\begin{column}{0.49\textwidth}
Use \textbf<2->{textblock} for arbitrary placement of objects.
\pause
\medskip
It creates a box
with the specified width (here in a percentage of the slide's width)
and upper left corner at the specified coordinate (x, y)
(here x is a percentage of width and y a percentage of height).
\end{column}
\end{columns}
\begin{textblock}{0.3}(0.45, 0.55)
\includegraphics<1, 3>[width = \textwidth]{example-image-a}
\end{textblock}
\end{frame}
\section{References}
\begin{frame}[allowframebreaks]{References}
\begin{thebibliography}{}
% Article is the default.
\setbeamertemplate{bibliography item}[book]
\bibitem{Hartshorne1977}
Hartshorne, R.
\newblock \emph{Algebraic Geometry}.
\newblock Springer-Verlag, 1977.
\setbeamertemplate{bibliography item}[article]
\bibitem{Helso2020}
Helsø, M.
\newblock \enquote{Rational quartic symmetroids}.
\newblock \emph{Adv. Geom.}, 20(1):71--89, 2020.
\setbeamertemplate{bibliography item}[online]
\bibitem{HR2018}
Helsø, M.\ and Ranestad, K.
\newblock \emph{Rational quartic spectrahedra}, 2018.
\newblock \url{https://arxiv.org/abs/1810.11235}
\setbeamertemplate{bibliography item}[triangle]
\bibitem{AM1969}
Atiyah, M.\ and Macdonald, I.
\newblock \emph{Introduction to commutative algebra}.
\newblock Addison-Wesley Publishing Co., Reading, Mass.-London-Don
Mills, Ont., 1969
\setbeamertemplate{bibliography item}[text]
\bibitem{Artin1966}
Artin, M.
\newblock \enquote{On isolated rational singularities of surfaces}.
\newblock \emph{Amer. J. Math.}, 80(1):129--136, 1966.
\end{thebibliography}
\end{frame}
\end{document}